
Welcome to Hype for Types!

Introductions
Main instructors: Cam (cjwong), Jacob (jacobneu), Thejas (tkadur)
Guest lecturers: Aditi, Ariel, Avery, Harrison, Matthew

Attendance
You must attend in order to pass!
Let us know if you can’t make it

Homework
Some lectures will have associated homeworks
Graded for effort, not completeness
Shouldn’t take more than an hour, but let us know if you need more
time

Etc.
Functional Programming & Type Theory prerequisite knowledge
You don’t have to understand every detail: some of these lectures
could fill a semester’s worth of content.
Let us know if you’re having any issues. This course should not be a
source of stress
The more feedback you give us (and the more questions you ask), the
better!

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 1 / 36

Welcome to Hype for Types!

Introductions
Main instructors: Cam (cjwong), Jacob (jacobneu), Thejas (tkadur)

Guest lecturers: Aditi, Ariel, Avery, Harrison, Matthew
Attendance

You must attend in order to pass!
Let us know if you can’t make it

Homework
Some lectures will have associated homeworks
Graded for effort, not completeness
Shouldn’t take more than an hour, but let us know if you need more
time

Etc.
Functional Programming & Type Theory prerequisite knowledge
You don’t have to understand every detail: some of these lectures
could fill a semester’s worth of content.
Let us know if you’re having any issues. This course should not be a
source of stress
The more feedback you give us (and the more questions you ask), the
better!

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 1 / 36

Welcome to Hype for Types!

Introductions
Main instructors: Cam (cjwong), Jacob (jacobneu), Thejas (tkadur)
Guest lecturers: Aditi, Ariel, Avery, Harrison, Matthew

Attendance
You must attend in order to pass!
Let us know if you can’t make it

Homework
Some lectures will have associated homeworks
Graded for effort, not completeness
Shouldn’t take more than an hour, but let us know if you need more
time

Etc.
Functional Programming & Type Theory prerequisite knowledge
You don’t have to understand every detail: some of these lectures
could fill a semester’s worth of content.
Let us know if you’re having any issues. This course should not be a
source of stress
The more feedback you give us (and the more questions you ask), the
better!

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 1 / 36

Welcome to Hype for Types!

Introductions
Main instructors: Cam (cjwong), Jacob (jacobneu), Thejas (tkadur)
Guest lecturers: Aditi, Ariel, Avery, Harrison, Matthew

Attendance
You must attend in order to pass!
Let us know if you can’t make it

Homework
Some lectures will have associated homeworks
Graded for effort, not completeness
Shouldn’t take more than an hour, but let us know if you need more
time

Etc.
Functional Programming & Type Theory prerequisite knowledge
You don’t have to understand every detail: some of these lectures
could fill a semester’s worth of content.
Let us know if you’re having any issues. This course should not be a
source of stress
The more feedback you give us (and the more questions you ask), the
better!

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 1 / 36

Welcome to Hype for Types!

Introductions
Main instructors: Cam (cjwong), Jacob (jacobneu), Thejas (tkadur)
Guest lecturers: Aditi, Ariel, Avery, Harrison, Matthew

Attendance
You must attend in order to pass!
Let us know if you can’t make it

Homework
Some lectures will have associated homeworks
Graded for effort, not completeness
Shouldn’t take more than an hour, but let us know if you need more
time

Etc.
Functional Programming & Type Theory prerequisite knowledge
You don’t have to understand every detail: some of these lectures
could fill a semester’s worth of content.
Let us know if you’re having any issues. This course should not be a
source of stress
The more feedback you give us (and the more questions you ask), the
better!

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 1 / 36

Welcome to Hype for Types!

Introductions
Main instructors: Cam (cjwong), Jacob (jacobneu), Thejas (tkadur)
Guest lecturers: Aditi, Ariel, Avery, Harrison, Matthew

Attendance
You must attend in order to pass!
Let us know if you can’t make it

Homework
Some lectures will have associated homeworks
Graded for effort, not completeness
Shouldn’t take more than an hour, but let us know if you need more
time

Etc.
Functional Programming & Type Theory prerequisite knowledge
You don’t have to understand every detail: some of these lectures
could fill a semester’s worth of content.
Let us know if you’re having any issues. This course should not be a
source of stress
The more feedback you give us (and the more questions you ask), the
better!

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 1 / 36

Intro to Type Theory and Lambda Calculus
Hype for Types

Jacob Neumann

14 January 2020

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 2 / 36

Table of Contents

1 Functional Programming

2 Ensuring Correctness

3 Type Theory

4 The Simply-Typed Lambda Calculus

5 Preview

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 3 / 36

Section 1

Functional Programming

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 4 / 36

Basic Idea of Functional Programming

Programming: Feeding a computer strings of symbols to tell it to do
stuff

Imperative programming: The strings represent instructions which
are executed for their effect on the computer’s state

Functional programming: The strings are expressions which are
evaluated to obtain values

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 5 / 36

Basic Idea of Functional Programming

Programming: Feeding a computer strings of symbols to tell it to do
stuff

Imperative programming: The strings represent instructions which
are executed for their effect on the computer’s state

Functional programming: The strings are expressions which are
evaluated to obtain values

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 5 / 36

Basic Idea of Functional Programming

Programming: Feeding a computer strings of symbols to tell it to do
stuff

Imperative programming: The strings represent instructions which
are executed for their effect on the computer’s state

Functional programming: The strings are expressions which are
evaluated to obtain values

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 5 / 36

Basic Idea of Functional Programming

Values

Syntactically Valid
Expressions

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 6 / 36

Basic Idea of Functional Programming

Values

Syntactically Valid
Expressions

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 7 / 36

Basic Idea of Functional Programming

Values

Syntactically Valid
Expressions

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 8 / 36

Basic Idea of Functional Programming

Values

Syntactically Valid
Expressions

[EFFECT]

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 9 / 36

Examples of Evaluation

0 =⇒ 0

1+1 =⇒ 2

if true then 6 else 2 =⇒ 6

(fn y => y::[])(NONE) =⇒ NONE::[]

map (print o Int.toString) [2,2] =⇒ [(),()]

(fn x => x+2+3) =⇒ (fn x => x+2+3)

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 10 / 36

Examples of Evaluation

0 =⇒ 0

1+1 =⇒ 2

if true then 6 else 2 =⇒ 6

(fn y => y::[])(NONE) =⇒ NONE::[]

map (print o Int.toString) [2,2] =⇒ [(),()]

(fn x => x+2+3) =⇒ (fn x => x+2+3)

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 10 / 36

Examples of Evaluation

0 =⇒ 0

1+1 =⇒ 2

if true then 6 else 2 =⇒ 6

(fn y => y::[])(NONE) =⇒ NONE::[]

map (print o Int.toString) [2,2] =⇒ [(),()]

(fn x => x+2+3) =⇒ (fn x => x+2+3)

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 10 / 36

Examples of Evaluation

0 =⇒ 0

1+1 =⇒ 2

if true then 6 else 2 =⇒ 6

(fn y => y::[])(NONE) =⇒ NONE::[]

map (print o Int.toString) [2,2] =⇒ [(),()]

(fn x => x+2+3) =⇒ (fn x => x+2+3)

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 10 / 36

Examples of Evaluation

0 =⇒ 0

1+1 =⇒ 2

if true then 6 else 2 =⇒ 6

(fn y => y::[])(NONE) =⇒ NONE::[]

map (print o Int.toString) [2,2] =⇒ [(),()]

(fn x => x+2+3) =⇒ (fn x => x+2+3)

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 10 / 36

Examples of Evaluation

0 =⇒ 0

1+1 =⇒ 2

if true then 6 else 2 =⇒ 6

(fn y => y::[])(NONE) =⇒ NONE::[]

map (print o Int.toString) [2,2] =⇒

[(),()]

(fn x => x+2+3) =⇒ (fn x => x+2+3)

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 10 / 36

Examples of Evaluation

0 =⇒ 0

1+1 =⇒ 2

if true then 6 else 2 =⇒ 6

(fn y => y::[])(NONE) =⇒ NONE::[]

map (print o Int.toString) [2,2] =⇒ [(),()]

(fn x => x+2+3) =⇒ (fn x => x+2+3)

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 10 / 36

Examples of Evaluation

0 =⇒ 0

1+1 =⇒ 2

if true then 6 else 2 =⇒ 6

(fn y => y::[])(NONE) =⇒ NONE::[]

map (print o Int.toString) [2,2] =⇒ [(),()]

(fn x => x+2+3) =⇒

(fn x => x+2+3)

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 10 / 36

Examples of Evaluation

0 =⇒ 0

1+1 =⇒ 2

if true then 6 else 2 =⇒ 6

(fn y => y::[])(NONE) =⇒ NONE::[]

map (print o Int.toString) [2,2] =⇒ [(),()]

(fn x => x+2+3) =⇒ (fn x => x+2+3)

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 10 / 36

Correctness

But a lot of things can go wrong:

Type Errors: 0 + false

Exceptions:

1 div 0

List.hd []

Nontermination: fact ∼1
Incorrect return values: fact 3 =⇒ 41297

Bad effects: Injection attacks because of lack of input sanitization

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 11 / 36

Correctness

But a lot of things can go wrong:

Type Errors: 0 + false

Exceptions:

1 div 0

List.hd []

Nontermination: fact ∼1
Incorrect return values: fact 3 =⇒ 41297

Bad effects: Injection attacks because of lack of input sanitization

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 11 / 36

Correctness

But a lot of things can go wrong:

Type Errors: 0 + false

Exceptions:

1 div 0

List.hd []

Nontermination: fact ∼1
Incorrect return values: fact 3 =⇒ 41297

Bad effects: Injection attacks because of lack of input sanitization

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 11 / 36

Correctness

But a lot of things can go wrong:

Type Errors: 0 + false

Exceptions:

1 div 0

List.hd []

Nontermination: fact ∼1

Incorrect return values: fact 3 =⇒ 41297

Bad effects: Injection attacks because of lack of input sanitization

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 11 / 36

Correctness

But a lot of things can go wrong:

Type Errors: 0 + false

Exceptions:

1 div 0

List.hd []

Nontermination: fact ∼1
Incorrect return values: fact 3 =⇒ 41297

Bad effects: Injection attacks because of lack of input sanitization

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 11 / 36

Correctness

But a lot of things can go wrong:

Type Errors: 0 + false

Exceptions:

1 div 0

List.hd []

Nontermination: fact ∼1
Incorrect return values: fact 3 =⇒ 41297

Bad effects: Injection attacks because of lack of input sanitization

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 11 / 36

Section 2

Ensuring Correctness

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 12 / 36

Solution 1: Runtime checks

Idea: Put in pieces of code which make sure everything’s going fine,
and crash/do something if not

Example:
if ![-f $FILE]; then

exit 1;

fi

Example: @requires and @ensures from 122, try/catch, exception
handling

Advantages: Easy to implement, flexible

Disadvantages: It’s difficult to anticipate every problem (so you can’t
say for sure there’s no problem), can be disruptive for users, runtime
is too late to catch bugs

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 13 / 36

Solution 1: Runtime checks

Idea: Put in pieces of code which make sure everything’s going fine,
and crash/do something if not

Example:
if ![-f $FILE]; then

exit 1;

fi

Example: @requires and @ensures from 122, try/catch, exception
handling

Advantages: Easy to implement, flexible

Disadvantages: It’s difficult to anticipate every problem (so you can’t
say for sure there’s no problem), can be disruptive for users, runtime
is too late to catch bugs

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 13 / 36

Solution 1: Runtime checks

Idea: Put in pieces of code which make sure everything’s going fine,
and crash/do something if not

Example:
if ![-f $FILE]; then

exit 1;

fi

Example: @requires and @ensures from 122, try/catch, exception
handling

Advantages: Easy to implement, flexible

Disadvantages: It’s difficult to anticipate every problem (so you can’t
say for sure there’s no problem), can be disruptive for users, runtime
is too late to catch bugs

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 13 / 36

Solution 1: Runtime checks

Idea: Put in pieces of code which make sure everything’s going fine,
and crash/do something if not

Example:
if ![-f $FILE]; then

exit 1;

fi

Example: @requires and @ensures from 122, try/catch, exception
handling

Advantages: Easy to implement, flexible

Disadvantages: It’s difficult to anticipate every problem (so you can’t
say for sure there’s no problem), can be disruptive for users, runtime
is too late to catch bugs

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 13 / 36

Solution 1: Runtime checks

Idea: Put in pieces of code which make sure everything’s going fine,
and crash/do something if not

Example:
if ![-f $FILE]; then

exit 1;

fi

Example: @requires and @ensures from 122, try/catch, exception
handling

Advantages: Easy to implement, flexible

Disadvantages: It’s difficult to anticipate every problem (so you can’t
say for sure there’s no problem), can be disruptive for users, runtime
is too late to catch bugs

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 13 / 36

Solution 1: Runtime checks

Idea: Put in pieces of code which make sure everything’s going fine,
and crash/do something if not

Example:
if ![-f $FILE]; then

exit 1;

fi

Example: @requires and @ensures from 122, try/catch, exception
handling

Advantages: Easy to implement, flexible

Disadvantages: It’s difficult to anticipate every problem (so you can’t
say for sure there’s no problem),

can be disruptive for users, runtime
is too late to catch bugs

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 13 / 36

Solution 1: Runtime checks

Idea: Put in pieces of code which make sure everything’s going fine,
and crash/do something if not

Example:
if ![-f $FILE]; then

exit 1;

fi

Example: @requires and @ensures from 122, try/catch, exception
handling

Advantages: Easy to implement, flexible

Disadvantages: It’s difficult to anticipate every problem (so you can’t
say for sure there’s no problem), can be disruptive for users,

runtime
is too late to catch bugs

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 13 / 36

Solution 1: Runtime checks

Idea: Put in pieces of code which make sure everything’s going fine,
and crash/do something if not

Example:
if ![-f $FILE]; then

exit 1;

fi

Example: @requires and @ensures from 122, try/catch, exception
handling

Advantages: Easy to implement, flexible

Disadvantages: It’s difficult to anticipate every problem (so you can’t
say for sure there’s no problem), can be disruptive for users, runtime
is too late to catch bugs

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 13 / 36

Solution 2: Formal Reasoning

Idea: Mathematically prove that the code works before running it

Example:
(* divmod(n,d) == (q,r) such that n=qd+r *)

Advantages: Mathematical certainty that the code works, doesn’t
require any extra machinery to implement

Disadvantages: Requires lots of effort and original thought, requires
everyone be fluent in (nontrivial) mathematics, most code is too
complex to be proven correct

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 14 / 36

Solution 2: Formal Reasoning

Idea: Mathematically prove that the code works before running it

Example:
(* divmod(n,d) == (q,r) such that n=qd+r *)

Advantages: Mathematical certainty that the code works, doesn’t
require any extra machinery to implement

Disadvantages: Requires lots of effort and original thought, requires
everyone be fluent in (nontrivial) mathematics, most code is too
complex to be proven correct

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 14 / 36

Solution 2: Formal Reasoning

Idea: Mathematically prove that the code works before running it

Example:
(* divmod(n,d) == (q,r) such that n=qd+r *)

Advantages: Mathematical certainty that the code works, doesn’t
require any extra machinery to implement

Disadvantages: Requires lots of effort and original thought, requires
everyone be fluent in (nontrivial) mathematics, most code is too
complex to be proven correct

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 14 / 36

Solution 2: Formal Reasoning

Idea: Mathematically prove that the code works before running it

Example:
(* divmod(n,d) == (q,r) such that n=qd+r *)

Advantages: Mathematical certainty that the code works,

doesn’t
require any extra machinery to implement

Disadvantages: Requires lots of effort and original thought, requires
everyone be fluent in (nontrivial) mathematics, most code is too
complex to be proven correct

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 14 / 36

Solution 2: Formal Reasoning

Idea: Mathematically prove that the code works before running it

Example:
(* divmod(n,d) == (q,r) such that n=qd+r *)

Advantages: Mathematical certainty that the code works, doesn’t
require any extra machinery to implement

Disadvantages: Requires lots of effort and original thought, requires
everyone be fluent in (nontrivial) mathematics, most code is too
complex to be proven correct

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 14 / 36

Solution 2: Formal Reasoning

Idea: Mathematically prove that the code works before running it

Example:
(* divmod(n,d) == (q,r) such that n=qd+r *)

Advantages: Mathematical certainty that the code works, doesn’t
require any extra machinery to implement

Disadvantages: Requires lots of effort and original thought,

requires
everyone be fluent in (nontrivial) mathematics, most code is too
complex to be proven correct

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 14 / 36

Solution 2: Formal Reasoning

Idea: Mathematically prove that the code works before running it

Example:
(* divmod(n,d) == (q,r) such that n=qd+r *)

Advantages: Mathematical certainty that the code works, doesn’t
require any extra machinery to implement

Disadvantages: Requires lots of effort and original thought, requires
everyone be fluent in (nontrivial) mathematics,

most code is too
complex to be proven correct

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 14 / 36

Solution 2: Formal Reasoning

Idea: Mathematically prove that the code works before running it

Example:
(* divmod(n,d) == (q,r) such that n=qd+r *)

Advantages: Mathematical certainty that the code works, doesn’t
require any extra machinery to implement

Disadvantages: Requires lots of effort and original thought, requires
everyone be fluent in (nontrivial) mathematics, most code is too
complex to be proven correct

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 14 / 36

What do we want? Correctness checks!
When do we want it? At compile-time!

We want checks which are

Automated (the programmer doesn’t have to sit down and come up
with a proof)

Guaranteed (if it passes the check, then the code should be free of
whatever bugs we’re checking for)

Pre-runtime (the checks are completed before the code is run)

To do this, we want to implement a system of compile-time checks: we
annotate the code with information telling the compiler how it works.
Then, when we compile the code, the compiler verifies that the code will
work as intended.

“If it compiles, it works”

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 15 / 36

What do we want? Correctness checks!
When do we want it? At compile-time!

We want checks which are

Automated (the programmer doesn’t have to sit down and come up
with a proof)

Guaranteed (if it passes the check, then the code should be free of
whatever bugs we’re checking for)

Pre-runtime (the checks are completed before the code is run)

To do this, we want to implement a system of compile-time checks: we
annotate the code with information telling the compiler how it works.
Then, when we compile the code, the compiler verifies that the code will
work as intended.

“If it compiles, it works”

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 15 / 36

What do we want? Correctness checks!
When do we want it? At compile-time!

We want checks which are

Automated (the programmer doesn’t have to sit down and come up
with a proof)

Guaranteed (if it passes the check, then the code should be free of
whatever bugs we’re checking for)

Pre-runtime (the checks are completed before the code is run)

To do this, we want to implement a system of compile-time checks: we
annotate the code with information telling the compiler how it works.
Then, when we compile the code, the compiler verifies that the code will
work as intended.

“If it compiles, it works”

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 15 / 36

What do we want? Correctness checks!
When do we want it? At compile-time!

We want checks which are

Automated (the programmer doesn’t have to sit down and come up
with a proof)

Guaranteed (if it passes the check, then the code should be free of
whatever bugs we’re checking for)

Pre-runtime (the checks are completed before the code is run)

To do this, we want to implement a system of compile-time checks: we
annotate the code with information telling the compiler how it works.
Then, when we compile the code, the compiler verifies that the code will
work as intended.

“If it compiles, it works”

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 15 / 36

What do we want? Correctness checks!
When do we want it? At compile-time!

We want checks which are

Automated (the programmer doesn’t have to sit down and come up
with a proof)

Guaranteed (if it passes the check, then the code should be free of
whatever bugs we’re checking for)

Pre-runtime (the checks are completed before the code is run)

To do this, we want to implement a system of compile-time checks: we
annotate the code with information telling the compiler how it works.
Then, when we compile the code, the compiler verifies that the code will
work as intended.

“If it compiles, it works”

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 15 / 36

What do we want? Correctness checks!
When do we want it? At compile-time!

We want checks which are

Automated (the programmer doesn’t have to sit down and come up
with a proof)

Guaranteed (if it passes the check, then the code should be free of
whatever bugs we’re checking for)

Pre-runtime (the checks are completed before the code is run)

To do this, we want to implement a system of compile-time checks: we
annotate the code with information telling the compiler how it works.
Then, when we compile the code, the compiler verifies that the code will
work as intended.

“If it compiles, it works”

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 15 / 36

The Central Dogma of Hype for Types

Push it to compile time!

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 16 / 36

The Central Dogma of Hype for Types

Push it to compile time!

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 16 / 36

Section 3

Type Theory

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 17 / 36

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 18 / 36

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 19 / 36

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 20 / 36

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 21 / 36

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 22 / 36

Type Systems Have Two Faces

So, we specify a type system for our functional language by giving rules to
determine the type of each expression.

This means there’s two “sides” to the type system:

The “practical” side: how the types guarantee features about how the
code will evaluate (and how to design compilers that perform this
typechecking)

The “theoretical” side: the logical properties of the type system itself,
and what the rules tell us about the relationships between types and
expressions

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 23 / 36

Type Systems Have Two Faces

So, we specify a type system for our functional language by giving rules to
determine the type of each expression.

This means there’s two “sides” to the type system:

The “practical” side: how the types guarantee features about how the
code will evaluate (and how to design compilers that perform this
typechecking)

The “theoretical” side: the logical properties of the type system itself,
and what the rules tell us about the relationships between types and
expressions

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 23 / 36

The Theory Side

As an example of the theory side, let’s look at the simplest typed
functional programming language, the simply-typed lambda calculus.

The
simply-typed lambda calculus includes four things:

Some basic types and expressions of those types

A unit type

Product types

Function types

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 24 / 36

The Theory Side

As an example of the theory side, let’s look at the simplest typed
functional programming language, the simply-typed lambda calculus. The
simply-typed lambda calculus includes four things:

Some basic types and expressions of those types

A unit type

Product types

Function types

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 24 / 36

The Theory Side

As an example of the theory side, let’s look at the simplest typed
functional programming language, the simply-typed lambda calculus. The
simply-typed lambda calculus includes four things:

Some basic types and expressions of those types

A unit type

Product types

Function types

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 24 / 36

Section 4

The Simply-Typed Lambda Calculus

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 25 / 36

A Simple Type System

The simply-typed lambda calculus – true to its name – has a very simple
type system. We define it inductively, with two base cases and two binary
inductive type constructors.

We assume there are some “basic types” A, B, C , . . .

There is a special type called unit

If σ and τ are types, σ ∗ τ is a type

If σ and τ are types, σ → τ is a type

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 26 / 36

A Simple Type System

The simply-typed lambda calculus – true to its name – has a very simple
type system. We define it inductively, with two base cases and two binary
inductive type constructors.

We assume there are some “basic types” A, B, C , . . .

There is a special type called unit

If σ and τ are types, σ ∗ τ is a type

If σ and τ are types, σ → τ is a type

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 26 / 36

A Simple Type System

The simply-typed lambda calculus – true to its name – has a very simple
type system. We define it inductively, with two base cases and two binary
inductive type constructors.

We assume there are some “basic types” A, B, C , . . .

There is a special type called unit

If σ and τ are types, σ ∗ τ is a type

If σ and τ are types, σ → τ is a type

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 26 / 36

A Simple Type System

The simply-typed lambda calculus – true to its name – has a very simple
type system. We define it inductively, with two base cases and two binary
inductive type constructors.

We assume there are some “basic types” A, B, C , . . .

There is a special type called unit

If σ and τ are types, σ ∗ τ is a type

If σ and τ are types, σ → τ is a type

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 26 / 36

A Simple Type System

The simply-typed lambda calculus – true to its name – has a very simple
type system. We define it inductively, with two base cases and two binary
inductive type constructors.

We assume there are some “basic types” A, B, C , . . .

There is a special type called unit

If σ and τ are types, σ ∗ τ is a type

If σ and τ are types, σ → τ is a type

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 26 / 36

Grammars

To state this concisely, we can give it as a grammar :

σ, τ ::= A (basic types)

| unit (unit)

| σ ∗ τ (product types)

| σ → τ (arrow types)

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 27 / 36

Contexts

In functional programming languages, the value (and the type) of
expressions depends on the context. For instance, consider the following
code.

val x : int = 2

val y = x + x

As written, the variable y here gets bound to 4:int.But if we replaced the
first line with

val x : real = 3.0

then y would get bound to 6.0:real. This is what we mean when we say
that the type and value of an expression depend on the context.

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 28 / 36

Contexts

In functional programming languages, the value (and the type) of
expressions depends on the context. For instance, consider the following
code.

val x : int = 2

val y = x + x

As written, the variable y here gets bound to 4:int.But if we replaced the
first line with

val x : real = 3.0

then y would get bound to 6.0:real. This is what we mean when we say
that the type and value of an expression depend on the context.

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 28 / 36

Contexts

In functional programming languages, the value (and the type) of
expressions depends on the context. For instance, consider the following
code.

val x : int = 2

val y = x + x

As written, the variable y here gets bound to 4:int.

But if we replaced the
first line with

val x : real = 3.0

then y would get bound to 6.0:real. This is what we mean when we say
that the type and value of an expression depend on the context.

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 28 / 36

Contexts

In functional programming languages, the value (and the type) of
expressions depends on the context. For instance, consider the following
code.

val x : int = 2

val y = x + x

As written, the variable y here gets bound to 4:int.But if we replaced the
first line with

val x : real = 3.0

then y would get bound to 6.0:real. This is what we mean when we say
that the type and value of an expression depend on the context.

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 28 / 36

Judgements and Contexts

For some syntactically-valid expression x and some type τ , we call this
string of symbols

x : τ

a “typing judgement”. We read that as “x is of type τ”.

A context Γ is just a finite list of typing judgements: the variables we’ve
bound so far.

Γ = x1 : τ1, . . . , xn : τn

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 29 / 36

Judgements and Contexts

For some syntactically-valid expression x and some type τ , we call this
string of symbols

x : τ

a “typing judgement”. We read that as “x is of type τ”.
A context Γ is just a finite list of typing judgements: the variables we’ve
bound so far.

Γ = x1 : τ1, . . . , xn : τn

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 29 / 36

Terms-in-context

With this, we can specify how the terms of the lambda calculus are
formed. Consider the following example:

val y = (x,x)

This variable binding needs (at least) one variable in its context, x. If
x : τ , then y : τ ∗ τ . We indicate this more formally by writing:

x : τ ` (x,x) : τ ∗ τ

We say that (x,x) is a term of type τ ∗ τ , in context x : τ . The lambda
calculus is specified using these terms-in-context.

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 30 / 36

Terms-in-context

With this, we can specify how the terms of the lambda calculus are
formed. Consider the following example:

val y = (x,x)

This variable binding needs (at least) one variable in its context, x. If
x : τ , then y : τ ∗ τ .

We indicate this more formally by writing:

x : τ ` (x,x) : τ ∗ τ

We say that (x,x) is a term of type τ ∗ τ , in context x : τ . The lambda
calculus is specified using these terms-in-context.

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 30 / 36

Terms-in-context

With this, we can specify how the terms of the lambda calculus are
formed. Consider the following example:

val y = (x,x)

This variable binding needs (at least) one variable in its context, x. If
x : τ , then y : τ ∗ τ . We indicate this more formally by writing:

x : τ ` (x,x) : τ ∗ τ

We say that (x,x) is a term of type τ ∗ τ , in context x : τ . The lambda
calculus is specified using these terms-in-context.

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 30 / 36

Terms-in-context

With this, we can specify how the terms of the lambda calculus are
formed. Consider the following example:

val y = (x,x)

This variable binding needs (at least) one variable in its context, x. If
x : τ , then y : τ ∗ τ . We indicate this more formally by writing:

x : τ ` (x,x) : τ ∗ τ

We say that (x,x) is a term of type τ ∗ τ , in context x : τ . The lambda
calculus is specified using these terms-in-context.

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 30 / 36

Example: Pairing

The following is a term-formation rule of the lambda calculus:

If Γ is some context such that x : σ in context Γ and y : τ in context
Γ, then (x,y) : σ ∗ τ in context Γ.

We indicate this more compactly using an inference rule.

Γ ` x : σ Γ ` y : τ

Γ ` (x,y) : σ ∗ τ

This gives an indication of how we’d recursively implement a lambda
calculus typechecker: in order to verify that the expression (x,y) is indeed
of type σ ∗ τ , we just need to check that x is of type σ and y is of type τ .

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 31 / 36

Example: Pairing

The following is a term-formation rule of the lambda calculus:

If Γ is some context such that x : σ in context Γ and y : τ in context
Γ, then (x,y) : σ ∗ τ in context Γ.

We indicate this more compactly using an inference rule.

Γ ` x : σ Γ ` y : τ

Γ ` (x,y) : σ ∗ τ

This gives an indication of how we’d recursively implement a lambda
calculus typechecker: in order to verify that the expression (x,y) is indeed
of type σ ∗ τ , we just need to check that x is of type σ and y is of type τ .

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 31 / 36

Example: Pairing

The following is a term-formation rule of the lambda calculus:

If Γ is some context such that x : σ in context Γ and y : τ in context
Γ, then (x,y) : σ ∗ τ in context Γ.

We indicate this more compactly using an inference rule.

Γ ` x : σ Γ ` y : τ

Γ ` (x,y) : σ ∗ τ

This gives an indication of how we’d recursively implement a lambda
calculus typechecker: in order to verify that the expression (x,y) is indeed
of type σ ∗ τ , we just need to check that x is of type σ and y is of type τ .

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 31 / 36

Some rules of the lambda calculus

There are a lot of rules specifying how the lambda calculus works. Here
are some highlights.

Γ ` () : unit

This says that, with no assumptions, in any context, () is of type unit.

Γ ` p : σ ∗ τ
Γ ` fst(p) : σ

Γ ` p : σ ∗ τ
Γ ` snd(p) : τ

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 32 / 36

Some rules of the lambda calculus

There are a lot of rules specifying how the lambda calculus works. Here
are some highlights.

Γ ` () : unit

This says that, with no assumptions, in any context, () is of type unit.

Γ ` p : σ ∗ τ
Γ ` fst(p) : σ

Γ ` p : σ ∗ τ
Γ ` snd(p) : τ

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 32 / 36

Some rules of the lambda calculus

There are a lot of rules specifying how the lambda calculus works. Here
are some highlights.

Γ ` () : unit

This says that, with no assumptions, in any context, () is of type unit.

Γ ` p : σ ∗ τ
Γ ` fst(p) : σ

Γ ` p : σ ∗ τ
Γ ` snd(p) : τ

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 32 / 36

Some rules of the lambda calculus

There are a lot of rules specifying how the lambda calculus works. Here
are some highlights.

Γ ` () : unit

This says that, with no assumptions, in any context, () is of type unit.

Γ ` p : σ ∗ τ
Γ ` fst(p) : σ

Γ ` p : σ ∗ τ
Γ ` snd(p) : τ

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 32 / 36

Some rules of the lambda calculus

Γ, x : σ ` e(x) : τ

Γ ` (λx .e(x)) : σ → τ

Γ ` f : σ → τ Γ ` t : σ

Γ ` (ft) : τ

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 33 / 36

Some rules of the lambda calculus

Γ, x : σ ` e(x) : τ

Γ ` (λx .e(x)) : σ → τ

Γ ` f : σ → τ Γ ` t : σ

Γ ` (ft) : τ

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 33 / 36

Type Practice

What if we had more than just arrows, unit and products? (Algebraic
Datatypes)

What if we had a type-theoretic way of distinguishing sanitized input
from unsantized input, and other similar distinctions? What if we had
a way to encode in the types that List.hd cannot be called on []?
(Phantom Types and Generalized Algebraic Datatypes)

What if we had a way of proving (in a way that could be verified by
the typechecker) that our code must meet a certain spec?
(Interactive Theorem Proving)

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 34 / 36

Type Practice

What if we had more than just arrows, unit and products? (Algebraic
Datatypes)

What if we had a type-theoretic way of distinguishing sanitized input
from unsantized input, and other similar distinctions? What if we had
a way to encode in the types that List.hd cannot be called on []?
(Phantom Types and Generalized Algebraic Datatypes)

What if we had a way of proving (in a way that could be verified by
the typechecker) that our code must meet a certain spec?
(Interactive Theorem Proving)

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 34 / 36

Type Practice

What if we had more than just arrows, unit and products? (Algebraic
Datatypes)

What if we had a type-theoretic way of distinguishing sanitized input
from unsantized input, and other similar distinctions? What if we had
a way to encode in the types that List.hd cannot be called on []?
(Phantom Types and Generalized Algebraic Datatypes)

What if we had a way of proving (in a way that could be verified by
the typechecker) that our code must meet a certain spec?
(Interactive Theorem Proving)

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 34 / 36

Type Practice

What if we had more than just arrows, unit and products? (Algebraic
Datatypes)

What if we had a type-theoretic way of distinguishing sanitized input
from unsantized input, and other similar distinctions? What if we had
a way to encode in the types that List.hd cannot be called on []?
(Phantom Types and Generalized Algebraic Datatypes)

What if we had a way of proving (in a way that could be verified by
the typechecker) that our code must meet a certain spec?
(Interactive Theorem Proving)

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 34 / 36

Type Theory

The theory of types is also interesting in its own right!

Type theory shares an intimate connection to intuitionistic logic
(Curry-Howard)

We can give a fascinating mathematical treatment of typed functional
programming (Category Theory)

We can give a fascinating type-theoretic treatment of mathematics
(Homotopy Type Theory)

So stay tuned!

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 35 / 36

Type Theory

The theory of types is also interesting in its own right!

Type theory shares an intimate connection to intuitionistic logic
(Curry-Howard)

We can give a fascinating mathematical treatment of typed functional
programming (Category Theory)

We can give a fascinating type-theoretic treatment of mathematics
(Homotopy Type Theory)

So stay tuned!

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 35 / 36

Type Theory

The theory of types is also interesting in its own right!

Type theory shares an intimate connection to intuitionistic logic
(Curry-Howard)

We can give a fascinating mathematical treatment of typed functional
programming (Category Theory)

We can give a fascinating type-theoretic treatment of mathematics
(Homotopy Type Theory)

So stay tuned!

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 35 / 36

Type Theory

The theory of types is also interesting in its own right!

Type theory shares an intimate connection to intuitionistic logic
(Curry-Howard)

We can give a fascinating mathematical treatment of typed functional
programming (Category Theory)

We can give a fascinating type-theoretic treatment of mathematics
(Homotopy Type Theory)

So stay tuned!

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 35 / 36

Type Theory

The theory of types is also interesting in its own right!

Type theory shares an intimate connection to intuitionistic logic
(Curry-Howard)

We can give a fascinating mathematical treatment of typed functional
programming (Category Theory)

We can give a fascinating type-theoretic treatment of mathematics
(Homotopy Type Theory)

So stay tuned!

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 35 / 36

Thank you!

Jacob Neumann Intro to Type Theory and Lambda Calculus 14 January 2020 36 / 36

	Functional Programming
	Ensuring Correctness
	Type Theory
	The Simply-Typed Lambda Calculus
	Preview

