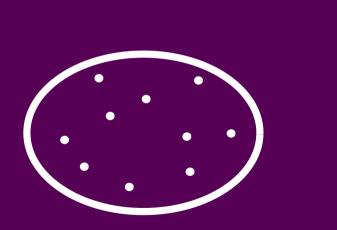
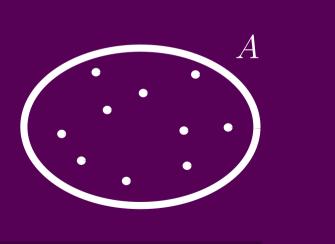


Type Theory with a Vitamin K Deficiency

Jacob Neumann 98-317 Guest Lecture - 08 December 2020

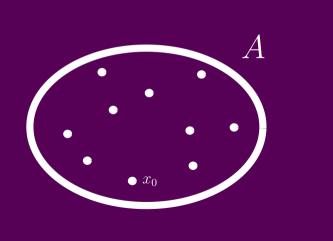


HoTT in 10 Minutes



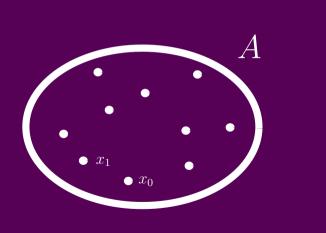
 $A:\mathsf{type}$

HoTT in 10 Minutes



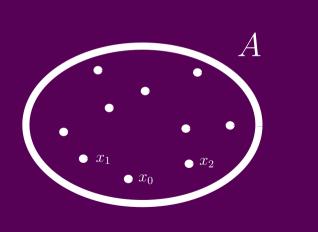
 $A: \mathsf{type}$ $x_0: A$

HoTT in 10 Minutes



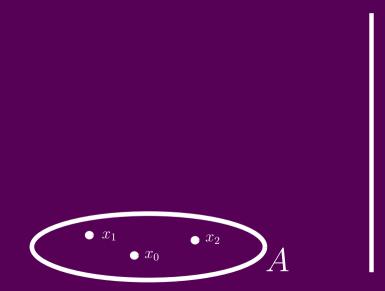
 $A: \mathsf{type}$ $x_0: A \qquad x_1: A$

HoTT in 10 Minutes

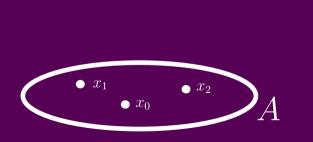


 $A: \mathsf{type}$ $x_0: A \qquad x_1: A$ $x_2: A$

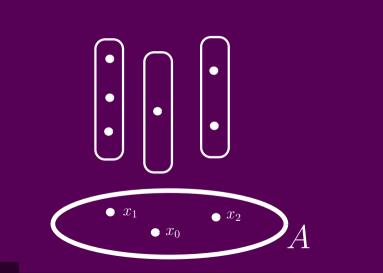
HoTT in 10 Minutes



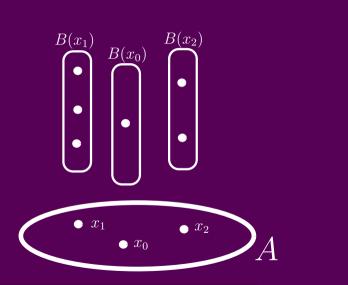
$A: \mathsf{type}$ $x_0: A \qquad x_1: A$ $x_2: A$



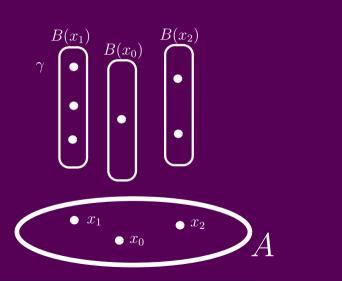
A : type $x_0 : A \qquad x_1 : A$ $x_2 : A$ $B : A \rightarrow type$



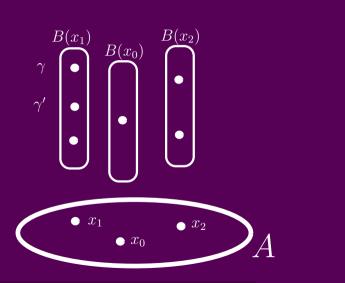
 $A: \mathsf{type}$ $x_0: A \qquad x_1: A$ $x_2: A$ $B: A \to \mathsf{type}$



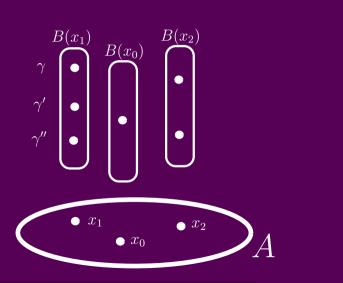
 $A: \mathsf{type}$ $x_0: A \qquad x_1: A$ $x_2: A$ $B: A \to \mathsf{type}$



A: type $x_0: A$ $x_1: A$ $x_2: A$ $B: A \rightarrow$ type $\gamma: B(x_1)$

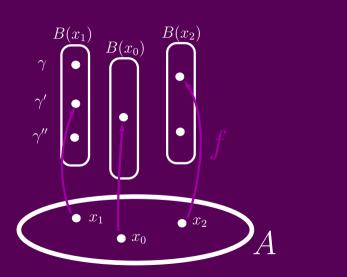


 $\begin{array}{l} A: \mathsf{type} \\ x_0: A \qquad x_1: A \\ x_2: A \\ B: A \to \mathsf{type} \\ \gamma: B(x_1) \\ \gamma': B(x_1) \end{array}$

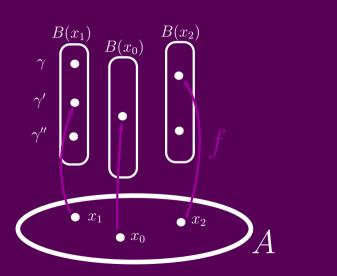


A: type $x_1:A$ $x_0:A$ $x_2:A$ $B: A \to \mathsf{type}$ $\gamma: B(x_1)$ $\gamma': B(x_1)$ $\gamma'': B(x_1)$

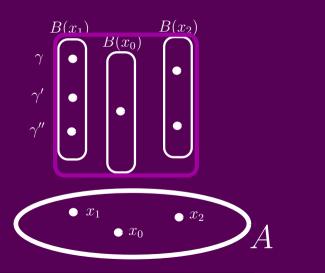
HoTT in 10 Minutes



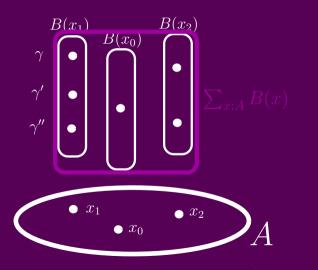
A: type $x_1:A$ $x_0: A$ $x_2:A$ $B: A \to \mathsf{type}$ $\gamma: B(x_1)$ $\gamma': B(x_1)$ $\gamma'': B(x_1)$



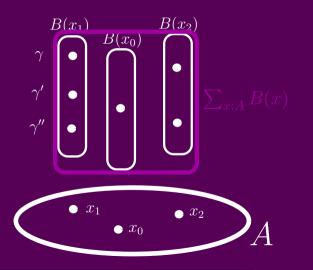
A: type $x_1:A$ $x_0:A$ $x_2: A$ $B: A \to \mathsf{type}$ $\gamma:B(x_1)$ $\gamma': B(x_1)$ $\gamma'': B(x_1)$



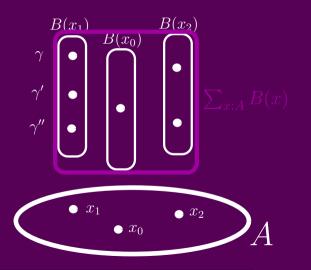
A: type $x_1:A$ $x_0: A$ $x_2: A$ $B: A \to \mathsf{type}$ $\gamma: B(x_1)$ $\gamma':B(x_1)$ $\gamma'': B(x_1)$ $f:\prod_{x:A}B(x)$



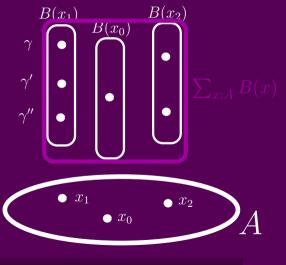
A: type $x_1:A$ $x_0: A$ $x_2: A$ $B: A \to \mathsf{type}$ $\gamma: B(x_1)$ $\gamma': B(x_1)$ $\gamma'': B(x_1)$ $f:\prod_{x:A}B(x)$



A: type $x_1:A$ $x_0: A$ $x_2: A$ $B: A \to \mathsf{type}$ $\gamma: B(x_1)$ $\gamma': B(x_1)$ $\gamma'': B(x_1)$ $f: \prod_{x:A} B(x)$ (x_1, γ) : $\sum_{x:A} B(x)$



A: type $x_1:A$ $x_0: A$ $x_2: A$ $B: A \to \mathsf{type}$ $\gamma: B(x_1)$ $\gamma': B(x_1)$ $\gamma'': B(x_1)$ $f:\prod_{x:A}B(x)$ $\frac{(x_1,\gamma)}{(x_1,\gamma')}:\sum_{x:A} B(x)$ $\sum_{x:A} B(x)$



A: type $x_1:A$ $x_0: A$ $x_2: A$ $B: A \to \mathsf{type}$ $\gamma: B(x_1)$ $\gamma': B(x_1)$ $\gamma'': B(x_1)$ $f:\prod_{x:A}B(x)$ $\frac{(x_1, \gamma)}{(x_1, \gamma')} : \sum_{x:A} B(x)$ $\sum_{x:A} B(x)$ $(x_1, \gamma'') : \sum_{x \in A} \underline{B}(x)$

Also in HoTT

- Unit type, 1
- Empty type, \mathbb{O}
- $\circ \ \neg A \equiv (A \to \mathbb{0})$
- Boolean type, 2
- Natural numbers type, N
- Integers type, $\mathbb Z$
- Product types, sum types, function types, ...
- Inductive types

Identity Types

Identity Types

$$\frac{x:A \qquad y:A}{(x=y) \text{ type}}$$

Identity Types

$$\frac{x:A \qquad y:A}{(x=y) \text{ type}}$$

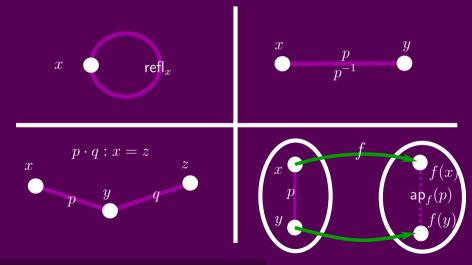
Curry-Howard: p: x = y is a "proof" or "witness" of the fact that x = y.

Identity Types

$$\frac{x:A \qquad y:A}{(x=y) \text{ type}}$$

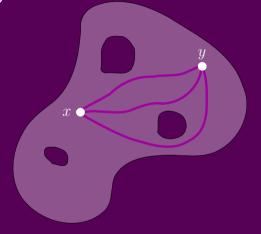
Curry-Howard: p: x = y is a "proof" or "witness" of the fact that x = y.

Basic Properties of Identity Types



What about identities between identities?

What about identities between identities?



HoTT in 10 Minutes

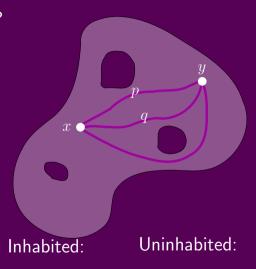
What about identities between identities?

HoTT in 10 Minutes

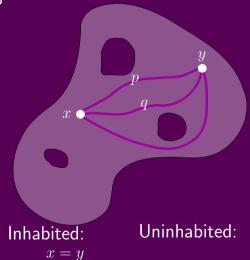
What about identities between identities?

HoTT in 10 Minutes

What about identities between identities?



What about identities between identities?



What about identities between identities?

Inhabited:
$$x = y$$

$$p = q$$

Uninhabited:

What about identities between identities?

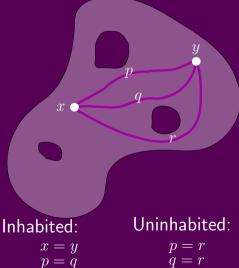
Inhabited: x = y

$p = \overset{o}{q}$

Uninhabited:

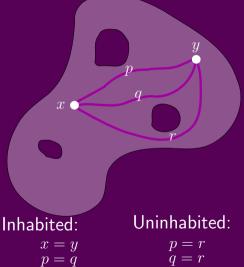
y

What about identities between identities?



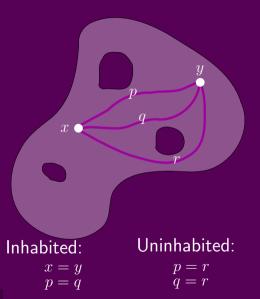
What about identities between identities?

 K_X :



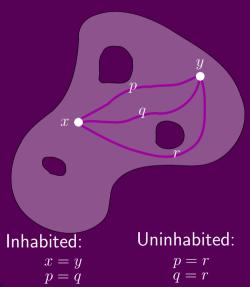
What about identities between identities?

 ${\sf K}_X:\,\prod_{x:X}$



What about identities between identities?

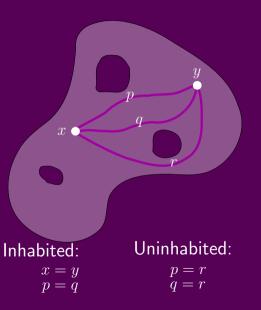
 $\mathsf{K}_X:\prod_{x:X}\prod_{p:x=x}$



HoTT in 10 Minutes

What about identities between identities?

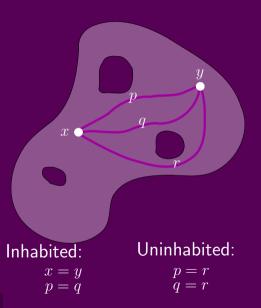
 $\mathsf{K}_X: \prod_{x:X} \prod_{p:x=x} p = \mathsf{refl}_x$



What about identities between identities?

 $\mathsf{K}_X: \prod_{x:X} \prod_{p:x=x} p = \mathsf{refl}_x$

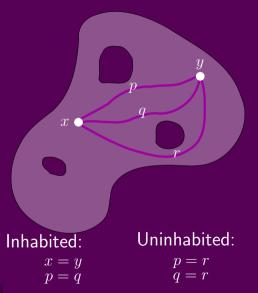
 UIP_X :



What about identities between identities?

 $\mathsf{K}_X: \prod_{x:X} \prod_{p:x=x} p = \mathsf{refl}_x$

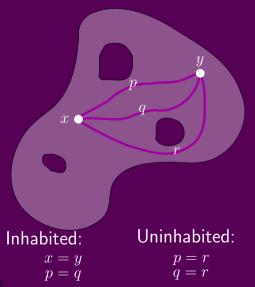
 $\mathsf{UIP}_X:\prod_{x,y:X}$



What about identities between identities?

 $\mathsf{K}_X: \prod_{x:X} \prod_{p:x=x} p = \mathsf{refl}_x$

 $\mathsf{UIP}_X: \prod_{x,y:X} \prod_{p,q:x=y}$



What about identities between identities?

$$\mathsf{K}_X: \prod_{x:X} \prod_{p:x=x} p = \mathsf{refl}_x$$

 $\mathsf{UIP}_X : \prod_{x,y:X} \prod_{p,q:x=y} p = q$

Inhabited:

$$x = y$$

 $p = q$
 $p = r$
 $q = r$

What about identities between identities?

$$\mathsf{K}_X: \prod_{x:X} \prod_{p:x=x} p = \mathsf{refl}_x$$

 $\left|\mathsf{UIP}_X:\prod_{x,y:X}\prod_{p,q:x=y}p=q\right|$

Thm.^{*} If X : Type satisfies Axiom K, then there is a term of type

$$\prod_{x,y:X} \neg \neg (x=y) \to (x=y)$$

Inhabited: x = yp = q

Uninhabited:

 $\begin{array}{c} p = r \\ q = r \end{array}$

• In HoTT, we do not assume that K/UIP holds in general (though it does for many types, like 2)

• In HoTT, we do not assume that K/UIP holds in general (though it does for many types, like 2)

{-# OPTIONS --without-K #-}

 In HoTT, we do not assume that K/UIP holds in general (though it does for many types, like 2)

{-# OPTIONS --without-K #-}

• In HoTT, types satisfying K/UIP are called "sets"

 In HoTT, we do not assume that K/UIP holds in general (though it does for many types, like 2)

{-# OPTIONS --without-K #-}

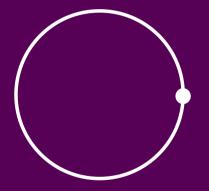
In HoTT, types satisfying K/UIP are called "sets"

 Much of the research in HoTT is into "higher inductive types" (HITs), which are inductively-given types which have constructors for building non-refl identities

$$\mathbb{S}^1 = \left\{ (x, y) \in \mathbb{R}^2 \ : \ x^2 + y^2 = 1 \right\}$$

Classical definition:

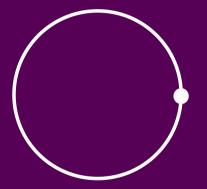
$$\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$



Hott in 10 Minutes

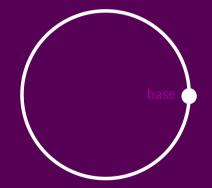
$$\mathbb{S}^1 = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \right\}$$

HoTT definition:



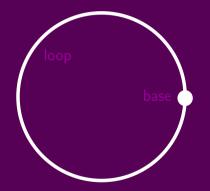
$$\mathbb{S}^1 = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \right\}$$

HoTT definition:



$$\mathbb{S}^1 = \left\{ (x,y) \in \mathbb{R}^2 \ : \ x^2 + y^2 = 1 \right\}$$
 HoTT definition:

- base : \mathbb{S}^1
- loop : base = base

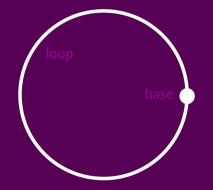


Classical definition:

$$\mathbb{S}^1 = \left\{ (x,y) \in \mathbb{R}^2 \ : \ x^2 + y^2 = 1 \right\}$$
 HoTT definition:

- base : \mathbb{S}^1
- loop : base = base

Inhabited: base = base, loop = loop, loop \cdot loop⁻¹ = refl_{base}, ...



Classical definition:

$$\mathbb{S}^1 = \left\{ (x,y) \in \mathbb{R}^2 \ : \ x^2 + y^2 = 1 \right\}$$
 HoTT definition:

- base : \mathbb{S}^1
- loop : base = base

Inhabited: base = base, loop = loop, loop \cdot loop⁻¹ = refl_{base}, ... Uninhabited: loop = refl_{base}, loop = loop⁻¹, loop = loop \cdot loop,...

Thank you!

Email me at jacobneu@andrew.cmu.edu if you want to learn more HoTT!