
Things to take with you
80-310/610 Formal Logic, Fall 2020

Pretty soon, your days as a student of 80-310/610 Formal Logic will be behind you. We
hope you got a taste of the exciting field of mathematical logic, and enjoyed doing so! As
you embark on your post-310/610 life, I wanted to type up a quick summary of some of the
key takeaways from the course. Even if you aren’t planning on studying any more formal
logic, I think you’ll find that some of these ideas can pop up in unexpected places. So may
this serve as a small reminder of how to think like a logician – I hope it comes in handy.

1 Formal Syntax

Before we could even get started with the mathematical apparatus of formal logic, we had
to be clear and explicit on one thing: what language we were speaking. Indeed, the manner
in which we express our reasoning is the very thing we’re studying when we do formal logic.
Trying to do formal logic without explicitly laying out your language is like trying to do
group theory without defining groups: you’re missing the object of your inquiry. This is a
general trend in formal logic: since we’re trying to formally study how other inquiries (like
the various branches of math) take place (and what their theoretical limits are), we have
to precisely and explicitly define things which you would usually take for granted or leave
implicit (e.g. what constitutes a “proof”).

So logicians must take care to specify the formal language they’re studying. As I mention
more in the next section, this is usually done recursively (often by a formal grammar). But
once we have our language (call it L) defined, there’s an important thing to realize: the
elements of L are – at this point – completely meaningless. Sure, we’ll take a formula, say
ϕ ∧ ψ, and heavily imply a particular meaning by pronouncing it “ϕ and ψ”. But they’re
just symbols on a page; they don’t mean anything until we explicitly give then meaning.

It’s also worth noting that our language L – even before we give it semantics or a deduc-
tive calculus – has a lot of its own structure. We can define (again by recursion) functions
articulating various properties of formulas (e.g. their rank), we can discuss relationships
among formulas (such as the “subformula” relation), and so on. With richer languages (like
that of predicate logic), there are even more features we can look into like variable binding &
capture, quantifier rank, and substitution. This will be important for our study of semantics
and deduction, for several reasons.

• We’ll often need to make syntactic “side conditions” (e.g. “t is free for x in ϕ”) to
correctly define our semantics & deductive calculus, and in some cases make use of the
syntactic structure for defining the semantics (see the notion of an extended signa-
ture).

• We’ll be interested in whether (and how) these syntactic relationships are reflected in
the semantics. In other words: what does the syntactic form of ϕ (and its syntactic
relationships to other formulas) tell us about what ϕ means (and how that meaning
relates to the meaning of other formulas)?

• For proving key meta-results about our logic (in particular the “Henkin construction”
to prove the completeness of predicate logic – see Sect. 5), we’ll cleverly deploy the

2

syntax to study the semantics. This is just one of many curious ways that logic talks
about itself.

How does this apply outside of mathematical logic? Well, there are certainly many
apparent problems which are in fact linguistic confusions. While it might not suit your
purposes to go all the way down to defining what “and” means, don’t underestimate the
value of precise syntax. Maybe a problem is evading solution simply because you haven’t
articulated it carefully enough. Maybe some disagreements are not disagreements at all,
but two people saying essentially the same thing in different languages. Choosing the right
syntax can be critical.

2 Recursion and Structural Induction

One technique we made use of this semester which shows up all over the place is definition
by grammar. For instance, we defined our propositional language using the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ → ψ (p ∈ PROP)

or some variant of that. This is a concise way to express a recursive definition (in this
case, the definition of “well-formed formula”): to write out in words what this grammar
says, we would need a lot of tedious verbage (“if ϕ is a formula, so is ¬ϕ; if ϕ and ψ
are formulas . . . ”). Among many other advantages, this allows for easy discussion of the
difference between languages: if I write out a slightly-different grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ (p ∈ PROP)

then it’s immediate to see the difference – no need to dig through paragraphs of “if ϕ is a
formula. . . ”.

Because of their convenience, grammars are used in many branches of logic, math, and
computer science. For instance, we can define languages with modal operators

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | �ϕ | ♦ϕ (p ∈ PROP)

or we can define arithmetical expressions

e ::= n | e1 + e2 | e1 · e2 | e1 − e2 | . . . (n ∈ Z)

or regular expressions

r ::= c | 0 | 1 | r1 + r2 | r1r2 | r∗

or the syntax of a programming language

τ ::= 1 | τ1 × τ2 | τ1 → τ2 | . . .
e ::= ? | (e1, e2) | λx : τ.e | e1(e2) | . . .

or more sophisticated program logics

π ::= π0 | ϕ? | π1; π2 | π1 ∪ π2 | π∗

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | 〈π〉ϕ

3

all using grammars! Note that the last example contains two clauses which are mutually
recursive, i.e. the ϕs are defined recursively in terms of the πs and the πs are defined
recursively in terms of the ϕs. This takes a bit of care to make formal sense of, but is
allowed!

The reason we want to define our language recursively (and therefore use a grammar) is
so that our syntax has a recursive structure. If we define our language in this way, then
each formula ϕ is built up out of the connectives in a unique way, i.e. it has a unique parse
tree. This allows us to make definitions by recursion, e.g.

rank(p) = 0

rank(¬ϕ) = 1 + rank(ϕ)

rank(ϕ ∧ ψ) = 1 + max(rank(ϕ), rank(ψ))

rank(ϕ ∨ ψ) = 1 + max(rank(ϕ), rank(ψ))

rank(ϕ → ψ) = 1 + max(rank(ϕ), rank(ψ)).

By supplying these clauses, rank is automatically a well-defined function taking formulas to
natural numbers: there cannot be any ambiguity about how to calculate the rank of a given
formula, because these clauses exhaust the possibilities for what the topmost connective in
ϕ’s parse tree could be. So we have a convenient way of defining properties (like the rank) of
our syntax. Also note how the rank of ϕ is defined in terms of the ranks of its subformulas.
This is the heart of recursion: make the “base case” of your definition, and then propagate
the definition up using these recursive clauses; each clause is simple, but they combine to
define a function defined on all formulas.

In the same way that recursion makes definitions expedient, structural induction
makes proofs expedient. Indeed, induction is essentially a recursive definition of a proof:
to prove that P (ϕ) for all ϕ, I start with my base case and supply a proof of P (p) for
each p. Then I give “recursive clauses” (called inductive steps) which say how to obtain
a proof of P (ϕ) using the proofs P (ψ) for subformulas ψ of ϕ. We usually phrase this
as assuming P (ψ) – the “inductive hypothesis” – and then obtaining P (ϕ) from that
assumption. But it supplies a method for constructing proofs: if a skeptic didn’t believe me
that P ((p ∧ q) → r), then they could use my inductive proof to come up with a proof of
that specific case:

• by the base case proof, P (p), P (q), and P (r) all hold;

• by the ∧ inductive step and the fact that P (p) and P (q) hold, derive that P (p ∧ q)
holds;

• by the → inductive step and the fact that P (r) and P (p ∧ q) holds, P ((p ∧ q) → r)
holds.

In this class, we mainly inducted on the natural numbers and formulas. But these are just
two instances of the broader power of structural induction. Whenever you have a recursive
definition (e.g. one given by a grammar), then there is a corresponding notion of recursion
and an induction principle. For instance, the natural numbers are given by:

n ::= 0 | n+ 1

and accordingly their recursion principle (to define a function f : N→ X) asks for f(0) and
f(n + 1) in terms of f(n), whereas the induction principle (to prove P (n) for all n ∈ N)

4

asks for a proof of P (0) and a proof of P (n + 1), assuming P (n). Notice how this exactly
matches the grammar. So if your grammar was instead

w ::= a | b | k(w, z) | h(w1, w2, w3) (z ∈ Z)

then to define a recursive function f , you would need to supply

• f(a)

• f(b)

• f(k(w, z)) for each z ∈ Z, where you’re allowed to refer to f(w)

• f(h(w1, w2, w3)), where you’re allowed to refer to f(w1), f(w2), and f(w3)

and a structural induction proof would go like:

• Prove P (a)

• Prove P (b)

• Assume P (w), then show for an arbitrary z ∈ Z that P (k(w, z))

• Assume P (w1), P (w2), and P (w3), then show P (h(w1, w2, w3)).

The possibilities here are endless: what matters is that you design the right syntax for
whatever you’re trying to do.

3 The Object Language/Metalanguage Distinction and Semantics

As mentioned above, the syntax of propositional (or predicate) logic is, on its own, meaning-
less. In order to endow these formal symbols with meaning, we need to supply semantics.
This is where the intention of the name “mathematical logic” starts to come into focus: the
semantics we’ll give for our formal symbols will specify a precise sense in which the sym-
bols are describing a mathematical structure. In the propositional case, this structure was
rather simple: a function assigning a truth value to each atomic proposition. In the case
of first-order logic, it was more complex: the “structures” we were dealing with were sets
with designated elements (to interpret the constants), relations on the set (to interpret the
relation symbols) and functions on the set (to interpret the function symbols). If you study
more logic, you’ll encounter more examples of mathematical structures (e.g. relational struc-
tures, algebraic structures, metric spaces, topologies, measure spaces, categories) which can
interpret formal languages. But the premise is the same: we attach our formal symbols to
mathematical structures, and try to understand how the syntactic structure of the symbols
corresponds to the mathematical properties of the structure interpreting that syntax.

We do this, of course, by recursion: Jϕ ∧ ψK is defined in terms of JϕK and JψK. Indeed,
our semantics definition will consist of clauses like

Jϕ ∧ ψK = true ⇐⇒ JϕK = true and JψK = true.

Now, it kinda looks like this clause says nothing at all: we’re defining ∧ using “and”, but ∧
is supposed to mean “and”. So I haven’t really defined what “and-ness” is, I’ve just moved

5

the goalposts to define one notion of “and” (∧) in terms of another (“and”). I’m just
moving words around and not saying anything. But actually there’s something interesting
going on here: I am effectively operating two layers of meaning. This is called the object
language/metalanguage distinction, and it sits at the heart of mathematical logic.

The name “mathematical logic” carries an intentional ambiguity. On the one hand, it can
mean (as suggested earlier in this section) that we are doing logic by mathematical means,
i.e. we are using the tools and objects of mathematics to study logic. This is certainly a
defining characteristic of mathematical logic. But the name can be read in another way:
mathematical logic is the logic of mathematics. That is, we are seeking to investigate the
manner of reasoning utilized in mathematics. Now, there’s an obvious problem here: if I
need mathematical tools to do mathematical logic, but also don’t want to presuppose any
math (because that’s what I want to construct & study), how can I even get started? The
recourse is metatheory: I take for granted some basic, informal1 principles about how to
reason, including the commonly-understood meaning of the word “and”, and then use that
to construct the mechanics of my formal logical system.

So the stuff we take for granted is encapsulated in the metalanguage. The right-hand
side of my semantic clause asks for JϕK = true and JψK = true: this is the case when both
JϕK = true and JψK = true hold, and does not hold when either does not hold. This is my
“meta” version of and. But now I’m using that to define the meaning of my formal symbol
∧ within the logical system I’m setting up. This logical system is the thing I’m ultimately
studying (the object of my inquiry), and the language within that system (which includes
∧ but not “and”) is called the object language. The object language serves as a formally-
defined copy of the reasoning that’s possible in the metalanguage. Maybe this analogy will
help: if I take a picture of you standing next to a tree, I can figure out just by looking at
the picture that the tree is, say, five times taller than you. I’m reasoning about the real you
and the real tree, but I’m doing that reasoning inside a controlled setting with an artificial
stand-in for both you and the tree. In mathematical logic, our goal is much more ambitious
than comparing the heights of people and trees: it’s capturing the essential structure of
reason itself.

So this is what our semantics achieved: they took reasoning from the metalanguage,
like “and”, and then encoded them in the formally-defined structure of the object lan-
guage. Going back to the analogy from the previous paragraph, if my picture of you next
to the tree was accurate enough (e.g. there wasn’t a distorted perspective), then I was
able to make conclusions about the real world based off my analysis of a picture. Like-
wise, if my semantics are good, then I can perform reasoning in the object language (see
Sect. 4 below), obtain conclusions, and then view these conclusions as applicable in the real
world. So my formal system is not just symbol-pushing, I’ve actually managed to formal-
ize reasoning from the metalanguage in a precise way. For instance, the formal deduction
{∀x(P (x) → Q(x)), P (s)} ` Q(s) formalizes the classical syllogistic argument, “All men
are mortal, Socrates is a man, therefore Socrates is mortal”. This argument seemed obvious
intuitively (i.e. using our metatheoretic notions of what “all” means), but now we have an
airtight logical rendition of this argument.

This, by the way, was why I was a constant stickler about what seemed like minor
notational differences. The symbol → was specified as a connective in our object language,
and was the formal stand-in for the metatheoretic notion of implication, which we indicated

1Informal in the sense of not being formalized in mathematical logic. These are still very rigorous.

6

with either =⇒ or “if. . . then. . . ”. Others use different conventions (e.g. some will instead
use =⇒ as part of the object language2), but this was our convention. And so, if you wrote

it was raining → it was not sunny

this inappropriately mixed the object and metalanguage: “it is raining” is a statement in
our metalanguage (English), whereas → is supposed to connect two formulas in the object
language. I similarly objected to using the symbol ∧ in the middle of a sentence when you
meant “and”, or ¬ when you meant “not”.3 Nitpicky? Perhaps. But it was in service of a
profound idea, so I stand by my nitpicking. An inherent part of mathematical logic is that
the logic talks about itself, and one must be very careful to not get confused – the object
language/metalanguage distinction helps sort that out.

4 Explicit Deductions and Soundness & Completeness

When learning to work and think like a mathematician, the main thing one must learn is
how to be rigorous. Most mathematicians can probably agree on some basic standards of
what being “rigorous” means: only working with clearly-defined objects, avoiding ambiguity,
not making statements without proving them (or providing a reference to a proof), and so
on. When working in the metalanguage (as mathematicians generally are), this is the kind
of standard you must hold yourself to. But, ultimately, whether a proof is sufficiently
“rigorous” enough depends on the mathematical conventions of the author & their audience,
and there doesn’t exist an explicit standard of whether a proof is rigorous or not. Reading
a mathematical proof and deciding if it’s correct requires a trained reader, and there can be
room for disagreement about whether a proof succeeds at establishing its intended result.
Proofs conducted in the metalanguage are inherently informal.

But we’re doing formal logic. We put a great deal of effort above into establishing exactly
what counts as a statement in our object language. If we wish to formalize what counts as a
proof, we’ll need a much better standard than “I know it when I see it”. To meet the level of
formal detail we want, there needs to be a completely objective way to look at a purported
object-language proof and determine if it actually counts as a proof. To do this, we will
need to explicitly and exhaustively account for all the “moves” allowed in a formal proof.
This is what’s achieved with the notion of deduction: it gives an exhaustive specification
of what you’re allowed to do to construct a proof in the object language. So if I claim to
have deduced some formula ϕ and supply a supposed proof, you can check each step to see
if it’s legal. There is no room for disagreement: it either is or isn’t a valid deduction, and
we can figure it out.

Of all the problems you solved on your problem sets, the easiest for me to grade were
the formal deductions: I could just go through each step and see if it was legal according
to the explicit rules given by the definition of “deduction”. I didn’t need to have a “sense”
of mathematical rigor, honed by years of reading and writing mathematical proofs. I didn’t
really even need to understand what you were proving, how the proof worked, what meaning
you intended for the symbols, etc.: I just needed to know how to follow basic syntactic rules.
In fact, a computer could do it: I could program up a computer to step through each line of
your deduction and check that at each step you either (a) wrote down an instance of one of

2Or, for reasons which still confound me, ⊃.
3∀ students ∈ formal logic, (they unnecessarily use formal symbols ∈ a sentence) → ¬(Jacob will give them a good grade)

7

our axiom schemes, or (b) applied one of our rules of deduction. We didn’t mention this too
much in the course, but this is a requirement for any axiom system in (usual) formal logic:
your axiom schemes and inference rules must be laid out so explicitly that a computer can be
programmed to recognize legitimate applications of them and reject illegitimate applications.

As an interesting side tangent: the connection between deduction and computation goes
much deeper. Indeed, the task of explicitly outlining what formal deductions are is the
problem which computer science was originally invented to solve. I spoke in the previous
paragraph about all our deduction rules being “explicit” and being “basic syntactic rules”.
But how do I know if my set of axioms & inference rules is “formal enough”?4 The proper
answer to this is what I mentioned in the previous paragraph: that a computer be able to
recognize whether the axioms and inference rules are being legally applied. It was in this
context that “computation” was explicitly defined for the first time.5

So what we’ve done with the notion of “deduction” is define explicitly how reasoning
is conducted in the object language. The object language exists to formalize metalanguage
statements about mathematical objects, and deduction seeks to formalize metalanguage
proofs. So how did we do? If we did our formalization project well, then the explicit,
sanitized deductive reasoning we can do in the object language ought to capture the full
range of what can be proved in the metalanguage. If I take my favorite mathematical
theory, devise a formal object language to express the features I’m concerned with, and start
deducing statements, I want two things to be true:

• Any formula which I can deduce, if read as a statement about the mathematical struc-
ture, should turn out to be true

• If there’s a statement which I can informally prove to be the case, then there ought to
be a formal deduction of the corresponding object-language formula.

These are both properties about the interplay between my informal and formal reasoning, and
together they say that my formal apparatus “adequately captures” my informal reasoning. If
both are true, then this shows the adequacy of my formal system: it’s powerful enough that
I can formally deduce any true statement, and is also correct (i.e. I can’t deduce things that
are false). If I have a formal system which satisfies these two properties, then it will turn out
to be tremendously useful. For instance, if a colleague and I disagree about the correctness
of an informal proof, then to settle our dispute we could try to formalize it. If the informal
proof is correct, then, by the second property, there must exist a formal deduction of that
fact. If the informal proof is incorrect and the claim it purports to prove is actually false,
then, by the first property, any attempt to formalize it will fail (and I should – in theory –
be able to deduce its negation). This gives us an objective mechanism to turn to when the
inherent subjectivity of informal proof becomes an issue.

4Consider this: instead of taking (L1)-(L5), (E1)-(E3), Generalization, and MP as my deductive system for first-order logic,
why couldn’t I just say, “every tautology of first-order logic is an axiom of my system, and there are no inference rules”. This
defines a deductive system, and it turns out to be sound & complete: every tautology is deducible (in one line), and only
tautologies are deducible. So why doesn’t that count as an axiomatization of first-order logic?

5Arguably the foundational work in theoretical computer science is Alan Turing’s 1936 paper On Computable Numbers with
an Application to the Entscheidungsproblem. If you read more about what the entscheidungsproblem is, you’ll find that it’s
about the ability of computers to do mathematical proofs, specifically whether there exists a computer algorithm which can take
an arbitrary first-order sentence and decide whether it’s a tautology or not. There isn’t such an algorithm, but in order to prove
that, Turing first had to define what an “algorithm” even is. The notion he came up with is now known as a Turing machine.
Subsequently, logicians (particularly Gödel) recognized that “verifiable by a terminating Turing machine” is the right condition
to require of our deductions. Gödel’s Incompleteness Theorems – though they originally predate Turing’s (and Church’s) work
on computability – critically rely on this condition (and most modern statements of the Incompleteness Theorems involve lots
of computability theory/recursion theory).

8

The properties in the preceding paragraph are, of course, the soundness and completeness
results of formal logic. If I have a mathematical theory I’m interested in (for instance,
partially ordered sets) and have devised a formal language for that theory (e.g. a first-order
signature with a binary relation ≤), and written down a set Γ of axioms (e.g. ∀x.x ≤ x)
which the models of the theory must satisfy, then the soundness and completeness theorems
assure me that:

• (Soundness) If I can deduce a sentence ϕ according to the rules of my deductive system
(where I’m allowed to write down any element of Γ as an assumption), then for any of
the models of my theory (any structure validating all of Γ, in this case any poset), ϕ
must hold of that model too,

• (Completeness) If there’s a formula ϕ which holds on all models of Γ, then there must
be a way of deducing ϕ from Γ.

And so we see that the formal deductive calculus succeeds at capturing the structural prop-
erties of the models, or at least the properties that can be formalized in the object language.

The Soundness and Completeness results also prove to be powerful tools for understand-
ing further how the model theory and proof theory interact. In light of the statement of
strong soundness and completeness (which is the statement mentioned in the previous para-
graph), we can focus our attention on sets Γ of object-language sentences, which we might
call theories. There are several closely-related notions here:

• consistency : Γ is consistent if, in the deductive calculus, it is impossible to prove a
contradiction from Γ

• satisfiability : Γ is satisfiable if there is a structure (interpreting the appropriate sig-
nature) which validates all the formulas in Γ

• finite satisfiability : every finite subset of Γ is satisfiable.

Soundness and Completeness gives us that satisfiability and consistency are equivalent. In-
deed, the standard way to prove a theory is consistent (which is difficult to prove directly,
since it’s hard to argue against all possible deductions) is to instead exhibit a model for it.
The question of whether certain first-order theories are consistent or not goes on to play a
central role in the development of modern logic.

But furthermore, as a corollary of completeness we can prove compactness: that finite
satisfiability and satisfiability are also equivalent. As we saw, this fact can be exploited
to deliver some of formal logic’s most startling results: showing that each finite subset of
Γ is satisfiable is often much easier than proving Γ itself satisfiable, and we can use that
to construct curious nonstandard models of familiar structures. The mere existence of
these structures (and the fact that they can be designed to satisfy our favorite standard
mathematical theories) raises a ton of interesting questions about the nature of mathematical
practice and its possibilities & limitations, which you’re well-encouraged to consider.

5 Maximally-Consistent Sets and The Henkin Construction

Finally, let me remark on the manner which we used to prove the soundness and com-
pleteness results. Soundness was proved, of course, by structural induction. Here, it was

9

the deductions which were the inductively-structured object: each deduction is either one
line, or consists of a shorter deduction extended by one line (according to strict rules, as
mentioned above). In particular, there were exactly four ways (three, in the propositional
case) to extend a deduction: write down another instance of an axiom scheme, write down
one of the assumptions in your theory Γ, apply modus ponens, or (in the case of predicate
logic) apply generalization. All deductions are produced by repeatedly doing these, and
so to prove something about all deductions we inducted on this structure, showing that it
preserved validity.

But it was completeness which really demanded us to work hard. In the propositional
case, we were able to prove completeness using maximally-consistent sets. We built up
a whole theory of maximally-consistent sets, including the key facts (a) that they’re closed
under deduction and (b) that they contain every formula or its negation. To prove the
contrapositive of completeness (that any formula ϕ such that Γ 6` ϕ, there’s a valuation
satisfying Γ but refuting ϕ), we had to pass from the syntactic/deductive side of things
to the semantic/model theoretic side, taking care to refute ϕ all along the way. If ϕ was
not a theorem of Γ (i.e. Γ 6` ϕ), this implied Γ ∪ {¬ϕ} consistent by the meaning of
“consistent”. We then had our two key lemmas: Lindenbaum’s Lemma6 to extend Γ∪{¬ϕ}
to a maximally-consistent Γ′, and then the Truth Lemma to turn Γ′ into a valuation vΓ′ such
that

JψKvΓ′ = true for all ψ ∈ Γ′.

In particular, we had that ¬ϕ ∈ Γ′ and Γ ⊆ Γ′, so vΓ′ was the Γ-validating-but-ϕ-refuting
valuation which Completeness demands. Variations on this method of proof abound (in
particular, for proving the completeness of logical systems), and the general spirit of specially-
building semantic structures out of the syntax is ubiquitous in formal logic.

The most famous place where semantics are fashioned from syntax is in the Henkin
construction, the standard modern approach for proving the Completeness of first-order
logic (the one you learned).7 There are several interesting moves in this proof, which I
encourage your continued reflection on.

• Starting with a consistent set Γ over the signature S, we need to expand both S and Γ
to “declare” a bunch of new terms. This needed to be done because Γ might contain a
bunch of existentially-quantified formulas which we need to be satisfied. A lot of effort
had to go into showing that we could extend S and Γ to S ′ and Γ∞ in an appropriate
way. Note that we’re nominally making our life harder here: satisfying Γ∞ should be
at least as hard as satisfying Γ, since Γ ⊆ Γ∞. But actually it makes it easier: the stuff
we add will actually make it possible to satisfy them. Sometimes the best way to make
your life easier is to make your life temporarily harder.

• Then we imported the logic of maximally consistent sets to extend Γ∞ to Γ′, again
producing an arbitrary maximally-consistent set using the key insight of Lindenbaum’s
Lemma.

• Then we had to find a model satisfying Γ′. And here’s where the syntax-into-semantics
magic really happens: the model we’ll construct will be built out of terms in the language.
That is, the term model is really built out of syntax. In the same way that vΓ′ was

6An important thing to realize about Lindenbaum’s Lemma is that it produces an arbitrary result. We usually don’t care
exactly which maximally consistent extension of our set we get (and in general there can be many), we just need one.

7Gödel’s 1929 Completeness proof is slightly different and more convoluted. Henkin came out with this proof a decade later.

10

specially-defined to exactly agree with Γ′ on the truth of formulas, the term model will
be designed to interpret terms as themselves. This connects back with our earlier work
to throw in a new term to witness each existentially-quantified formula in Γ: those
terms become elements of the domain of discourse, the exact kind of thing to witness
existential statements.

• Then we needed to force the sentences of Γ′ to be true in this model. In particular, we
need to make it so that terms considered equal in the Γ′-theory (i.e. terms s and t such
that Γ′ ` s = t) actually are interpreted as the same element of the domain of discourse
in the term model. So to do this, we make the domain of discourse of the term model
equivalence classes of terms, where the equivalence relation is given by Γ′-deducible
equality. Again, we’re using the syntactic/deductive world to define the semantics in
the way we want.

• And then finally, we could prove that terms in S ′ are actually interpreted as themselves
(or rather, as their equivalence class) and prove the Truth Lemma: that the term model
validates exactly those formulas deducible from Γ′.

This was all to prove the Model Existence Lemma, and then Completeness is a quick corol-
lary. This proof had a large impact on the field of formal logic, and many logicians have
utilized insights from this proof for various other means. As mentioned above, using the
syntax to construct semantics, specifically semantics which interpret the syntactic elements
as (some version of) themselves is a really clever approach. And it showcases the ability of
logic to “fold in on itself” and “talk about itself”. Logic is really unique in its ability to do
this sort of thing, and this proof is one of many fine examples.

6 Conclusion

So, as I said at the top, I hope you take a lot of these insights with you, and figure out
new and exciting ways to use them. But at the very least, I hope you felt the same awe at
this beautiful topic, the same amusement at its clever moves, and same appreciation for its
ambitious scope that I did as I learned it. Thanks for a great semester.

	Formal Syntax
	Recursion and Structural Induction
	The Object Language/Metalanguage Distinction and Semantics
	Explicit Deductions and Soundness & Completeness
	Maximally-Consistent Sets and The Henkin Construction
	Conclusion

