
Lecture 7
Principles of Functional Programming

Summer 2020

Datatypes



Section 1

Trees

Jacob Neumann Datatypes 28 May 2020 2 / 44



Binary trees in SML

We define a new type tree with the following syntax (which we’ll
discuss more later):
7.0

1 datatype tree =

2 Empty | Node of tree * int * tree

This declares a new type called tree whose constructors are
Empty and Node . Empty is a constant constructor because it’s
just a value of type tree . Node takes in an argument of type
tree*int*tree and produces another tree .

All trees are either of the form Empty or Node(L,x,R) for some
x : int (referred to as the root of the tree), some L : tree

(referred to as the left subtree), and some R : tree (referred to
as the right subtree)

Jacob Neumann Datatypes 28 May 2020 3 / 44



E

7.2

1 Empty

Jacob Neumann Datatypes 28 May 2020 4 / 44



1

E E

7.3

1 Node(Empty ,1,Empty)

Jacob Neumann Datatypes 28 May 2020 5 / 44



1

E 2

E E

7.4

1 Node(Empty ,1,Node(Empty ,2,Empty))

Jacob Neumann Datatypes 28 May 2020 6 / 44



1

E 2

E 3

E 4

E 5

E E

7.5

1 Node(Empty ,1,Node(Empty ,2,Node(Empty ,3,Node(

Empty ,4,Node(Empty ,5,Empty)))))

Jacob Neumann Datatypes 28 May 2020 7 / 44



1

2

E E

3

E E

7.6

1 Node(Node(Empty ,2,Empty),1,Node(Empty ,3,Empty)

)

Jacob Neumann Datatypes 28 May 2020 8 / 44



1

2

E E

3

4

E E

E

7.7

1 Node(Node(Empty ,2,Empty),1,Node(Node(Empty ,4,

Empty) ,3,Empty))

Jacob Neumann Datatypes 28 May 2020 9 / 44



1

2

E E

4

3

5

E E

E

E

7.8

1 Node(Node(Empty ,2,Empty),1,Node(Node(Node(

Empty ,5,Empty),3,Empty),4,Empty))

Jacob Neumann Datatypes 28 May 2020 10 / 44



1

E 2

3

E 4

E E

E

7.9

1 Node(Empty ,1,Node(Node(Empty ,3,Node(Empty ,4,

Empty)) ,2,Empty))

Jacob Neumann Datatypes 28 May 2020 11 / 44



1

2

4

8

E E

9

E E

5

10

E E

11

E E

3

6

E 13

E E

7

14

E E

E

7.10

1 Node(Node(Node(Node(Empty ,8,Empty),4,Node(

Empty ,9,Empty)),2,Node(Node(Empty ,10, Empty)

,5,Node(Empty ,11, Empty))),1,Node(Node(Empty

,6,Node(Empty ,13, Empty)),3,Node(Node(Empty

,14, Empty),7,Empty)))

Jacob Neumann Datatypes 28 May 2020 12 / 44



Traversals

Inorder
7.12

1 fun inord (Empty:tree):int list = []

2 | inord (Node(L,x,R)) =

3 (inord L) @ (x::inord R)

Jacob Neumann Datatypes 28 May 2020 13 / 44



Traversals

Preorder
7.13

1 fun preord (Empty:tree):int list = []

2 | preord (Node(L,x,R)) =

3 x::(( preord L) @ (preord R))

Jacob Neumann Datatypes 28 May 2020 14 / 44



Minimum

7.14

1 fun min (Empty:tree , default:int) = default

2 | min (Node(L,x,R),default) =

3 let

4 (* Parallel *)

5 val (minL ,minR) =

6 (min(L,default), min(R,default))

7 in

8 (* Constant -time *)

9 Int.min(x,Int.min(minL ,minR))

10 end

Jacob Neumann Datatypes 28 May 2020 15 / 44



Analyzing the work & span of tree functions

To analyze the runtime complexity of functions defined by recursion on
trees, we need a notion of size for trees. It turns out that we have two:

Depth/height: the length (number of nodes) in the longest path
from the root to any leaf node
7.1

1 fun height (Empty:tree):int = 0

2 | height (Node(L,_,R)) =

3 1 + Int.max(height L,height R)

Size: the number of nodes in the tree
7.11

1 fun size (Empty:tree):int = 0

2 | size (Node(L,_,R)) =

3 1 + (size L) + (size R)

We’ll use both.

Jacob Neumann Datatypes 28 May 2020 16 / 44



Balanced Trees

We’ll say a tree is balanced if both its subtrees are balanced and both of
its subtrees have approximately the same height (their heights differ by
at most one).

On balanced trees, you can assume a recursive call to the left
subtree costs approximately the same amount of time as on the
right subtree.

If n is the size of a balanced tree, and d is its height, then we can
assume

n ≈ 2d

Jacob Neumann Datatypes 28 May 2020 17 / 44



Depth-Analysis of min

0 Notion of size: depth d of the input tree

1 Recurrences:

Wmin(0) = k0

Wmin(d) ≤ k1 + 2Wmin(d− 1)

Smin(0) = k0

Smin(d) ≤ k1 + Smin(d− 1)

2-4 . . .

5 Wmin(d) is O(2d), Smin(d) is O(d)

Remember: if the input tree is balanced, then 2d ≈ n, where n is the
size (number of nodes).

Jacob Neumann Datatypes 28 May 2020 18 / 44



Size-Analysis of preord

0 Notion of size: number of nodes n of the input

1 Recurrences:

Wpreord(0) = k0

Wpreord(n) = 2Wpreord(n/2) + kn

NOTE: This assumes the tree is balanced

Spreord(0) = k0

Spreord(n) ≤ Spreord(n/2) + kn

2-4 . . .

5 Wpreord(n) is O(n log n), Spreord(n) is O(n)

Jacob Neumann Datatypes 28 May 2020 19 / 44



(pause for questions)

Jacob Neumann Datatypes 28 May 2020 20 / 44



Section 2

Structural Induction

Jacob Neumann Datatypes 28 May 2020 21 / 44



Induction Principle

Recall that for lists, the two constructors were [] and
:: of t * t list where t is the type of list we’re dealing with.
Subsequently, the induction principle for lists was that if P ([]) and if
P (xs) implies P (x::xs), then P (L) holds for all L.

Principle of Structural Induction on Trees: If P (Empty) holds and,
for all values L:tree , R:tree and values x:int, P (L) and P (R)
implies P (Node(L,x,R)).

Jacob Neumann Datatypes 28 May 2020 22 / 44



Example: Reversing Trees

7.15

1 fun revTree (Empty:tree):tree = Empty

2 | revTree (Node(L,x,R) =

3 Node(revTree R,x,revTree L)

7.12

1 fun inord (Empty:tree):int list = []

2 | inord (Node(L,x,R)) =

3 (inord L) @ (x::inord R)

Thm. For all values T:tree ,

rev (inord T) ∼= inord(revTree T)

Jacob Neumann Datatypes 28 May 2020 23 / 44



When life hands you lemmas...

Lemma 1 For all valuable expressions L1:int list ,
L2:int list ,

rev (L1@L2) ∼= (rev L2)@(rev L1)

Lemma 2 inord is total

Lemma 3 rev is total

Lemma 4 For all valuable expressions L1:int list ,
L2:int list , and all values x:int,

(L1@[x])@L2 ∼= L1@(x::L2)

Lemma 5 revTree is total

Jacob Neumann Datatypes 28 May 2020 24 / 44



Thm. For all values T:tree ,

rev (inord T) ∼= inord(revTree T)

Proof of Thm

BC T=Empty

rev (inord Empty)

∼= rev [] (defn of inord)
∼= [] (defn of rev)
∼= inord Empty (defn inord)
∼= inord (revTree Empty) (defn revTree)

Jacob Neumann Datatypes 28 May 2020 25 / 44



Example: Reversing Trees

IS T=Node(L,x,R) for some values L,R:tree and x:int

IH1 rev(inord L) ∼= inord(revTree L)

IH2 rev(inord R) ∼= inord(revTree R)

rev(inord (Node(L,x,R)))

∼= rev(( inord L)@(x::( inord R))) (defn inord)

∼= (rev (x::inord R)) @ (rev(inord L)) ( Lemma 1,2 )

∼= ((rev (inord R))@[x]) @ (rev(inord L))

( Lemma 2 , defn of rev)

∼= (rev (inord R))@(x::(rev(inord L)))

( Lemma 2,3,4 )

Jacob Neumann Datatypes 28 May 2020 26 / 44



Example: Reversing Trees

∼= (rev (inord R))@(x::(rev(inord L)))

( Lemma 2,3,4 )

∼= inord(revTree R) @ (x::inord(revTree L))

( IH1,2 )

∼= inord(Node(revTree R,x,revTree L))

( Lemma 5 , defn inord)

∼= inord(revTree(Node(L,x,R))) (defn revTree)

�

Jacob Neumann Datatypes 28 May 2020 27 / 44



(pause for questions)

Jacob Neumann Datatypes 28 May 2020 28 / 44



Section 3

Datatypes

Jacob Neumann Datatypes 28 May 2020 29 / 44



Notice some similarities. . .

All natural numbers are either 0 or n+1 for some natural number
n. To prove P (n) for all natural numbers n, we prove P (0) and
prove that P (n) implies P (n+1).

All values of type t list are either [] or x::xs for some x:t

and some value xs:t list . To prove P (L) for all values
L:int list , we prove P ([]) and prove that P (xs) implies
P (x::xs) for arbitrary x:t.

All value of type tree are either Empty or Node(L,x,R) for
some x:int and some values L and R of type tree . To prove
P (T) for all values T:tree , we prove P (Empty) and prove that
P (L) and P (R) together imply P (Node(L,x,R)) for arbitrary
x:int.

What’s the general pattern?

Jacob Neumann Datatypes 28 May 2020 30 / 44



The datatype keyword

7.16

1 datatype foo = Abcd

2 | Qwerty of int * string

3 | Zyxwv of int * foo

Abcd is a constant constructor, i.e. a constructor value of type
foo

Qwerty is a constructor of the foo type, which takes in an
argument of type int*string . Qwerty can also be thought of
(and used) as a function value of type int * string -> foo.

Zyxwv is a constructor of the foo type, which takes in an
argument of type int * foo. Zyxwv can also be thought of
(and used) as a function value of type int * foo -> foo

Jacob Neumann Datatypes 28 May 2020 31 / 44



Recursion on defined datatypes

7.17

1 val f1 : foo = Abcd

2 val f2 : foo = Qwerty (15,"onefifty")

3 val f3 : foo = Zyxwv (150,f2)

7.18

1 fun toInt Abcd = 2

2 | toInt (Qwerty(n,_)) = n

3 | toInt (Zyxwv (k,F)) = k + toInt F

Jacob Neumann Datatypes 28 May 2020 32 / 44



Induction on defined datatypes

Thm. For all values f : foo, P (f).

Proof By induction on f

BC f=Abcd

(proof of P (Abcd))

BC f=Qwerty(n,s) for some values n:int, s:string

(proof of P (Qwerty(n,s)) for arbitrary n,s)

IS f=Zyxwv(n,f’) for some values n:int, f’:foo

IH P (f’)

(proof of P (Zyxwv(n,f)) for arbitrary n, using IH )

�

Jacob Neumann Datatypes 28 May 2020 33 / 44



Examples

Natural Numbers

datatype nat = Zero

| Succ of nat

fun toInt Zero = 0

| toInt (Succ n) = 1 + toInt n

fun fromInt 0 = Zero

| fromInt n = Succ(fromInt (n-1))

Note: natFact is total, even though fact is not:

fun fact 0 = 1 | fact n = n * fact(n-1)

fun natFact (N : nat):int =

fact(toInt N)

Jacob Neumann Datatypes 28 May 2020 34 / 44



Examples

Trees
7.0

1 datatype tree =

2 Empty | Node of tree * int * tree

Lists

datatype ’t list =

[] | :: of ’t * ’t list

infixr ::

(Note: This is not exactly how lists are defined)

Parametrized by a type variable (more about this on Monday)
:: is also infixed

Jacob Neumann Datatypes 28 May 2020 35 / 44



New Example: options

The parametrized datatype option is pre-defined in SML:

datatype ’t option = NONE | SOME of ’t

For every type t, there is a type t option

NONE is a value (and a constructor) of type t option .

SOME is a constructor of the t option type: if x:t, then
SOME(x) is a value of type t option . SOME is also a function
value of type t -> t option .

We can case on options by pattern-matching the constructors:

case (thing : bool option option) of

(SOME(SOME true)) => ...

| (SOME _ ) => ...

| NONE => ...

Can do structural induction on options

Jacob Neumann Datatypes 28 May 2020 36 / 44



Section 4

Example: Days of the Week

Jacob Neumann Datatypes 28 May 2020 37 / 44



Type Aliases

7.19

1 type giantTuple = int * int * int * int * int

* int * int * int

Jacob Neumann Datatypes 28 May 2020 38 / 44



Days of the Week

7.20

1 datatype day =

2 Sunday | Monday | Tuesday | Wednesday |

Thursday | Friday | Saturday

7.21

1 fun nextDay Saturday = Sunday

2 | nextDay Friday = Saturday

3 | nextDay Thursday = Friday

4 | nextDay Wednesday = Thursday

5 | nextDay Tuesday = Wednesday

6 | nextDay Monday = Tuesday

7 | nextDay Sunday = Monday

Jacob Neumann Datatypes 28 May 2020 39 / 44



Day of the Week

7.22

1 datatype month = Jan | Feb | Mar | Apr

2 | May | Jun | Jul | Aug

3 | Sep | Oct | Nov | Dec

4 type date = int

dayOfWeek : month * date -> day

REQUIRES: DD ≥ 0
ENSURES: dayOfWeek(MM,DD) evaluates to what day of the
week it was on the DDth day of the month of MM, 2020. Each
month is counted as if it went on forever, so
dayOfWeek(Apr ,197000) should return what day of the week
it is, 196970 days after April 2020 concludes.

Jacob Neumann Datatypes 28 May 2020 40 / 44



Hard-code New Year’s Day

7.23

1 fun dayOfWeek (Jan:month ,01: date):day =

Wednesday

Jacob Neumann Datatypes 28 May 2020 41 / 44



Carry over months

7.24

1 | dayOfWeek (Feb ,01) =

2 nextDay(dayOfWeek (Jan ,31))

3 | dayOfWeek (Mar ,01) =

4 nextDay(dayOfWeek (Feb ,29))

5 | dayOfWeek (Apr ,01) =

6 nextDay(dayOfWeek (Mar ,31))

7 | dayOfWeek (May ,01) =

8 nextDay(dayOfWeek (Apr ,30))

9 | dayOfWeek (Jun ,01) =

10 nextDay(dayOfWeek (May ,31))

11 | dayOfWeek (Jul ,01) =

12 nextDay(dayOfWeek (Jun ,30))

13 | dayOfWeek (Aug ,01) =

14 nextDay(dayOfWeek (Jul ,31))

15 | dayOfWeek (Sep ,01) =

16 nextDay(dayOfWeek (Aug ,31))

17 | dayOfWeek (Oct ,01) =

18 nextDay(dayOfWeek (Sep ,30))

19 | dayOfWeek (Nov ,01) =

20 nextDay(dayOfWeek (Oct ,31))

21 | dayOfWeek (Dec ,01) =

22 nextDay(dayOfWeek (Nov ,30))

Jacob Neumann Datatypes 28 May 2020 42 / 44



Then recur

7.25

1 | dayOfWeek (MM ,DD) = nextDay(dayOfWeek (MM,

DD -1))

Jacob Neumann Datatypes 28 May 2020 43 / 44



Thank you!

Jacob Neumann Datatypes 28 May 2020 44 / 44


	Trees
	Structural Induction
	Datatypes
	Example: Days of the Week

