Lecture 6 Principles of Functional Programming Summer 2020

Parallelism and Trees

Section 1

Recap: Work Analysis of Recursive Functions

Jacob Neumann

Parallelism and Trees

27 May 2020 2 / 51

The Tree Method

Jacob Neumann

・ロト ・日下・ ・ ヨト・

0 How you're quantifying input size

- 0 How you're quantifying input size
- 1 Recurrence

- 0 How you're quantifying input size
- $1 \ {\sf Recurrence}$
- 2 Description of work tree

- 0 How you're quantifying input size
- 1 Recurrence
- 2 Description of work tree
- 3 Measurements of work tree (height, and width at each level)

- 0 How you're quantifying input size
- 1 Recurrence
- 2 Description of work tree
- 3 Measurements of work tree (height, and width at each level)
- 4 Summation

- 0 How you're quantifying input size
- 1 Recurrence
- 2 Description of work tree
- 3 Measurements of work tree (height, and width at each level)
- 4 Summation
- 5 Big-O

3 Measurements Height: n Work on the i-th level: $k_1 + k_2(n-i)$

4 Sum:

$$W(n) \approx k_0 + \sum_{i=0}^n (k_1 + k_2(n-i)) = \dots$$

3 Measurements Height: $n\,$ Work on the i-th level: $k_1+k_2(n-i)$

4 Sum:

$$W(n) \approx k_0 + \sum_{i=0}^n (k_1 + k_2(n-i)) = \dots$$

5 Big O:

$$W(n)$$
 is $O(n^2)$

Section 2

Asymptotic Analysis of Multi-Step Algorithms

Jacob Neumann

Parallelism and Trees

27 May 2020 5 / 51

Sorting is a classic algorithmic problem in computer science: finding the fastest way to put all the elements of a list in order.

< D > < A > < B >

Sorting is a classic algorithmic problem in computer science: finding the fastest way to put all the elements of a list in order.

A value $[x_1, \ldots, x_n]$: int list is **sorted** if for each $i = 1, \ldots, n-1$, Int.compare($x_i, x_i(i+1)$) \cong GREATER.

Sorting is a classic algorithmic problem in computer science: finding the fastest way to put all the elements of a list in order.

A value $[x_1, \ldots, x_n]$: int list is **sorted** if for each $i = 1, \ldots, n-1$, Int.compare $(x_i, x_i+1) \not\cong$ GREATER.

Or, recursively: a value v:int list is **sorted** if either v=[] or v=[x] for some x, or v=x::x'::xs where Int.compare(x,x') \cong GREATER and x'::xs is sorted.

Spec

6.0

1	fun	<pre>isSorted ([]:int list):bool = true</pre>
2		isSorted [x] = true
3		<pre>isSorted (x::x'::xs) =</pre>
4		<pre>(x<=x') andalso isSorted(x'::xs)</pre>

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

Spec

6.0

1	fun	<pre>isSorted ([]:int list):bool = true</pre>
2		isSorted [x] = true
3		isSorted (x::x'::xs) =
4		<pre>(x<=x') andalso isSorted(x'::xs)</pre>

sort : int list -> int list REQUIRES: true ENSURES: sort(L) evaluates to a sorted permutation of L

A "permutation" of L is just a list that contains the same elements the same number of times as L, just in a possibly different order. So [1,1,2,3] is a permutation of [3,1,2,1] but not of [3,2,1].

Image: A match a ma

We'll be focusing on *merge sort*, which consists of the following three steps:

We'll be focusing on *merge sort*, which consists of the following three steps:

1 Split the input list in half

We'll be focusing on *merge sort*, which consists of the following three steps:

- 1 Split the input list in half
- 2 Sort each half

We'll be focusing on *merge sort*, which consists of the following three steps:

- 1 Split the input list in half
- 2 Sort each half
- 3 merge the sorted halves together to obtain a sorted whole

merge : int list * int list -> int list REQUIRES: A and B are sorted ENSURES: merge(A,B) evaluates to a sorted permutation of A@B

通 ト イヨ ト イヨト

= nar

merge : int list * int list -> int list REQUIRES: A and B are sorted ENSURES: merge(A,B) evaluates to a sorted permutation of A@B

```
msort : int list -> int list
REQUIRES: true
ENSURES: msort(L) evaluates to a sorted permutation of L
```

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

E ∽QQ

• • • • • • • • • • • •

6.1

```
fun split ([]:int list) = ([],[])
1
    | split [x] = ([x],[])
2
    | split (x::x'::xs) =
3
      let
4
          val (A,B) = split xs
5
      in
6
         (x::A, x'::B)
7
      end
8
```

∃ <200</p>

イロト イポト イヨト イヨト

merge : int list * int list -> int list REQUIRES: A and B are sorted ENSURES: merge(A,B) evaluates to a sorted permutation of A@B

イロト イポト イヨト イヨト

merge : int list * int list -> int list REQUIRES: A and B are sorted ENSURES: merge(A,B) evaluates to a sorted permutation of A@B

6.2

1	<pre>fun merge (L1:int list,[]:int list) = L1</pre>
2	merge ([],L2) = L2
3	merge (x::xs,y::ys) =
4	<pre>(case Int.compare(x,y) of</pre>
5	GREATER => y::merge(x::xs,ys)
6	<pre> _ => x::merge(xs,y::ys))</pre>

伺 ト イヨ ト イヨ

= 990

msort : int list -> int list REQUIRES: true ENSURES: msort(L) evaluates to a sorted permutation of L

msort : int list -> int list REQUIRES: true ENSURES: msort(L) evaluates to a sorted permutation of L

6.3

```
fun msort([]:int list):int list = []
1
    | msort [x] = [x]
2
    I
     msort L =
3
      let
4
          val (A,B) = split L
5
      in
6
         merge(msort A, msort B)
7
      end
8
```

= nar

Analysis

6.1

```
fun split ([]:int list) = ([],[])
1
      split [x] = ([x],[])
    2
    | split (x::x'::xs) =
3
      let
4
          val (A,B) = split xs
5
      in
6
         (x::A, x'::B)
7
      end
8
```

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

E 990

Analysis

6.1

1	<pre>split ([]:int list) = ([],[])</pre>
2	<pre>split [x] = ([x],[])</pre>
3	split (x::x'::xs) =
4	let
5	val (A,B) = split xs
6	in
7	(x::A,x'::B)
8	end

0 Measure of size: length of input list

(日)

Analysis

6.1

1	fun	<pre>split ([]:int list) = ([],[])</pre>
2		<pre>split [x] = ([x],[])</pre>
3		<pre>split (x::x'::xs) =</pre>
4		let
5		val (A,B) = split xs
6		in
7		(x::A,x'::B)
8		end

0 Measure of size: length of input list 1

$$\begin{split} W_{\texttt{split}}(0) &= k_0 \\ W_{\texttt{split}}(1) &= k_1 \\ W_{\texttt{split}}(n) &= k_2 + W_{\texttt{split}}(n-2) \end{split}$$

$0\;$ Measure of size: length of input list

1

$$\begin{split} W_{\texttt{split}}(0) &= k_0 \\ W_{\texttt{split}}(1) &= k_1 \\ W_{\texttt{split}}(n) &= k_2 + W_{\texttt{split}}(n-2) \end{split}$$

< □ > < □ > < □

1

$0\;$ Measure of size: length of input list

$$\begin{split} W_{\texttt{split}}(0) &= k_0 \\ W_{\texttt{split}}(1) &= k_1 \\ W_{\texttt{split}}(n) &= k_2 + W_{\texttt{split}}(n-2) \end{split}$$

2-4 ...

5 $W_{\texttt{split}}(n)$ is O(n)

1

$0\;$ Measure of size: length of input list

$$\begin{split} W_{\texttt{split}}(0) &= k_0 \\ W_{\texttt{split}}(1) &= k_1 \\ W_{\texttt{split}}(n) &= k_2 + W_{\texttt{split}}(n-2) \end{split}$$

2-4 ...

5 $W_{\texttt{split}}(n)$ is O(n)

6.2

1	fun	<pre>merge (L1:int list,[]:int list) = L1</pre>
2		merge ([],L2) = L2
3		merge (x::xs,y::ys) =
4		<pre>(case Int.compare(x,y) of</pre>
5		GREATER => y::merge(x::xs,ys)
6		<pre> _ => x::merge(xs,y::ys))</pre>

◆□▶ ◆□▶ ◆ □▶ ◆ □▶

6.2

1	<pre>fun merge (L1:int list,[]:int list) = L1</pre>
2	merge ([],L2) = L2
3	merge (x::xs,y::ys) =
4	<pre>(case Int.compare(x,y) of</pre>
5	GREATER => y::merge(x::xs,ys)
6	_ => x::merge(xs,y::ys))

0 Measure of size: sum of lengths of input lists

6.2

1	fun	<pre>merge (L1:int list,[]:int list) = L1</pre>
2		merge ([],L2) = L2
3		merge (x::xs,y::ys) =
4		<pre>(case Int.compare(x,y) of</pre>
5		GREATER => y::merge(x::xs,ys)
6		<pre> _ => x::merge(xs,y::ys))</pre>

0 Measure of size: sum of lengths of input lists 1

$$W_{\texttt{merge}}(0) = k_0$$
$$W_{\texttt{merge}}(n) \le k_1 + W_{\texttt{merge}}(n-1)$$

6.2

1	fun	<pre>merge (L1:int list,[]:int list) = L1</pre>
2		merge ([],L2) = L2
3		merge (x::xs,y::ys) =
4		<pre>(case Int.compare(x,y) of</pre>
5		GREATER => y::merge(x::xs,ys)
6		<pre> _ => x::merge(xs,y::ys))</pre>

 $0\,$ Measure of size: sum of lengths of input lists $1\,$

$$W_{\texttt{merge}}(0) = k_0$$
$$W_{\texttt{merge}}(n) \le k_1 + W_{\texttt{merge}}(n-1)$$

2-4 ...
5
$$W_{merge}(n)$$
 is $O(n)$

6.2

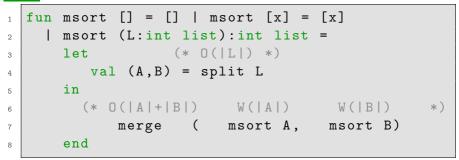
1	fun	<pre>merge (L1:int list,[]:int list) = L1</pre>
2		merge ([],L2) = L2
3		merge (x::xs,y::ys) =
4		<pre>(case Int.compare(x,y) of</pre>
5		GREATER => y::merge(x::xs,ys)
6		<pre> _ => x::merge(xs,y::ys))</pre>

 $0\,$ Measure of size: sum of lengths of input lists $1\,$

$$W_{\texttt{merge}}(0) = k_0$$
$$W_{\texttt{merge}}(n) \le k_1 + W_{\texttt{merge}}(n-1)$$

2-4 ...
5
$$W_{merge}(n)$$
 is $O(n)$

6.4

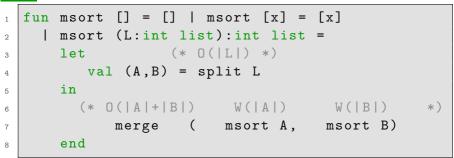


6.4

msort [] = [] | msort [x] = [x] fun 1 msort (L:int list):int list = 2 let (* O(|L|) *) 3 val (A,B) =split L 4 in 5 (* O(|A|+|B|) W(|A|) W(|B|)*) 6 merge (msort A, msort B) 7 end 8

0 Measure of size: length of input list

6.4



0 Measure of size: length of input list

1

$$\begin{split} W_{\texttt{msort}}(0) &= k_0 \\ W_{\texttt{msort}}(1) &= k_1 \\ W_{\texttt{msort}}(n) &\leq k_2 + k_3 n + W_{\texttt{msort}}\left(\frac{n}{2}\right) + W_{\texttt{msort}}\left(n - \frac{n}{2}\right) + k_4 n \\ &\approx 2W_{\texttt{msort}}(n/2) + kn \end{split}$$

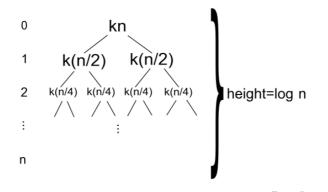
Jacob Neumann

$$\begin{split} W_{\texttt{msort}}(0) &= k_0 \\ W_{\texttt{msort}}(1) &= k_1 \\ W_{\texttt{msort}}(n) &\leq 2 W_{\texttt{msort}}(n/2) + kn \end{split}$$

三 つくぐ

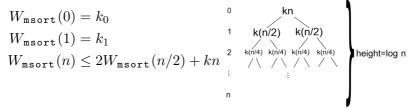
$$\begin{split} W_{\texttt{msort}}(0) &= k_0 \\ W_{\texttt{msort}}(1) &= k_1 \\ W_{\texttt{msort}}(n) &\leq 2 W_{\texttt{msort}}(n/2) + kn \end{split}$$

2 Work Tree

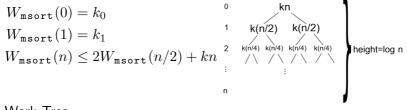


```
\begin{split} W_{\texttt{msort}}(0) &= k_0 \\ W_{\texttt{msort}}(1) &= k_1 \\ W_{\texttt{msort}}(n) &\leq 2W_{\texttt{msort}}(n/2) + kn \end{split}
```

< □ > < □ > < □ > < □ >

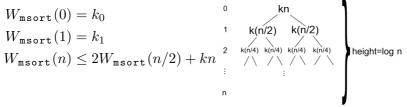


2 Work Tree



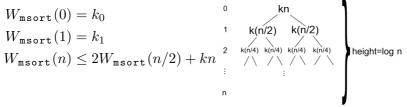
- 2 Work Tree
- 3 Measurements

Height: $\log n$ Work on the *i*-th level: $2^i \frac{kn}{2^i} = kn$



- 2 Work Tree
- 3 Measurements Height: $\log n$ Work on the *i*-th level: $2^{i} \frac{kn}{2^{i}} = kn$
- 4 Sum:

$$W(n) \approx \sum_{i=0}^{\log n} kn$$



- 2 Work Tree
- 3 Measurements Height: $\log n$ Work on the *i*-th level: $2^i \frac{kn}{2^i} = kn$

4 Sum:

$$W(n) \approx \sum_{i=0}^{\log n} kn$$

5 Big O:

$$W(n)$$
 is $O(n \log n)$

(pause for questions)

・ロト ・日下・ ・ ヨト

Section 3

Parallel Cost Analysis

Jacob Neumann

Parallelism and Trees

 ▶ < ≣ ▶ ≣</th>
 ∽ < ⊂</th>

 27 May 2020
 20 / 51

 Since this is functional code, there's no dependency between the evaluation of msort A and the evaluation of msort B

- Since this is functional code, there's no dependency between the evaluation of msort A and the evaluation of msort B
- An intelligent scheduler (with access to enough processors) could assign these evaluation processes to different processors, and have them calculated at the same time

- Since this is functional code, there's no dependency between the evaluation of msort A and the evaluation of msort B
- An intelligent scheduler (with access to enough processors) could assign these evaluation processes to different processors, and have them calculated at the same time
- This is known as an "opportunity for parallelism"

val (x,y) = (e1,e2)

Opportunity for Parallelism

val (x,y) = (e1,e2)

Opportunity for Parallelism

Opportunity for Parallelism

Opportunity for Parallelism

Opportunity for Parallelism

NOT an opportunity

val (x,y) = (e1,e2) Opportunity for Parallelism

val x = e1

Opportunity for Parallelism

val x = e1(* DOES depend on x *) val y = e^2 NOT an opportunity val x = case e1 ofp1 => e2 | ... NOT an opportunity

val (x,y) = (e1,e2) Opportunity for Parallelism

val x = e1

Opportunity for Parallelism

val x = e1(* DOES depend on x *) val y = e^2 NOT an opportunity val x = case e1 ofp1 => e2 | ... NOT an opportunity

val z = e1 e2

NOT an opportunity

= nar

val (x,y) = (e1,e2) Opportunity for Parallelism

val x = e1

Opportunity for Parallelism

val x = e1(* DOES depend on x *) val y = e^2 NOT an opportunity val x = case e1 ofp1 => e2 | ... NOT an opportunity

val z = e1 e2

NOT an opportunity

= nar

Jacob Neumann

・ロト ・日下・ ・ ヨト

The work (sequential runtime) of a function is the number steps it will take to evaluate, when we do not take advantage of any parallelism

- The work (sequential runtime) of a function is the number steps it will take to evaluate, when we do not take advantage of any parallelism
- The span (parallel runtime) of a function is the number of steps it will take to evaluate, when we take advantage of *all* opportunities for parallelism (we assume we have enough processors to do so)

- The work (sequential runtime) of a function is the number steps it will take to evaluate, when we do not take advantage of any parallelism
- The span (parallel runtime) of a function is the number of steps it will take to evaluate, when we take advantage of *all* opportunities for parallelism (we assume we have enough processors to do so)
- We will express both as a big-O complexity class, representing how the runtime grows as the input size grows

- The work (sequential runtime) of a function is the number steps it will take to evaluate, when we do not take advantage of any parallelism
- The span (parallel runtime) of a function is the number of steps it will take to evaluate, when we take advantage of *all* opportunities for parallelism (we assume we have enough processors to do so)
- We will express both as a big-O complexity class, representing how the runtime grows as the input size grows
- We will obtain both by analyzing the code, obtaining recurrences, and solving those recurrences (using the tree method) to obtain the big-O complexity

val x = (e1, e2)

val x = (e1, e2)

$$W_{\tt x} = W_{\tt e1} + W_{\tt e2}$$

val x = (e1, e2)

$$W_{\mathtt{x}} = W_{\mathtt{e1}} + W_{\mathtt{e2}}$$

 $S_{\mathtt{x}} = \max\left(S_{\mathtt{e1}}, S_{\mathtt{e2}}\right)$

val
$$x = (e1, e2)$$

$$W_{\mathtt{x}} = W_{\mathtt{e1}} + W_{\mathtt{e2}}$$

$$S_{\mathtt{x}} = \max\left(S_{\mathtt{e1}}, S_{\mathtt{e2}}\right)$$

If we assume that e1 and e2 take approximately the same amount of time to evaluate, then

$$W_{\mathtt{x}} = 2W_{\mathtt{e1}} \qquad S_{\mathtt{x}} = S_{\mathtt{e1}} = S_{\mathtt{e2}}$$

split doesn't have any parallelism

6.1

1

1	fun	<pre>split ([]:int list) = ([],[])</pre>
2		<pre>split [x] = ([x],[])</pre>
3		<pre>split (x::x'::xs) =</pre>
4		let
5		val (A,B) = split xs
6		in
7		(x::A,x'::B)
8		end

$$\begin{split} S_{\texttt{split}}(0) &= k_0 \\ S_{\texttt{split}}(1) &= k_1 \\ S_{\texttt{split}}(n) &= k_2 + S_{\texttt{split}}(n-2) \end{split}$$

Jacob Neumann

27 May 2020 25 / 5

Image: A matrix and a matrix

split doesn't have any parallelism

6.1

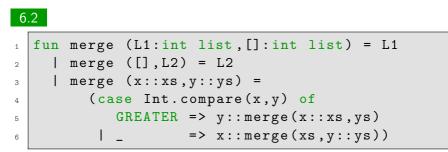
1	fun	<pre>split ([]:int list) = ([],[])</pre>
2		<pre>split [x] = ([x],[])</pre>
3		<pre>split (x::x'::xs) =</pre>
4		let
5		val (A,B) = split xs
6		in
7		(x::A,x'::B)
8		end

1

$$\begin{split} S_{\texttt{split}}(0) &= k_0 \\ S_{\texttt{split}}(1) &= k_1 \\ S_{\texttt{split}}(n) &= k_2 + S_{\texttt{split}}(n-2) \end{split}$$

5 $S_{\texttt{split}}(n)$ is O(n)

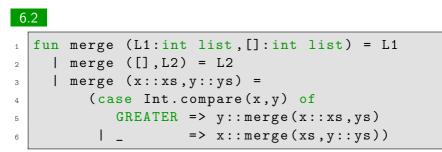
merge doesn't either



1

$$\begin{split} S_{\texttt{merge}}(0) &= k_0\\ S_{\texttt{merge}}(n) \leq k_1 + S_{\texttt{merge}}(n-1) \end{split}$$

merge doesn't either



1

$$\begin{split} S_{\texttt{merge}}(0) &= k_0\\ S_{\texttt{merge}}(n) \leq k_1 + S_{\texttt{merge}}(n-1) \end{split}$$

5 $S_{merge}(n)$ is O(n)

1 Recurrence:

$$\begin{split} W_{\texttt{msort}}(0) &= k_0 \\ W_{\texttt{msort}}(1) &= k_1 \\ W_{\texttt{msort}}(n) &\leq 2 W_{\texttt{msort}}(n/2) + kn \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

 $1 \ {\sf Recurrence:} \\$

$$\begin{split} W_{\texttt{msort}}(0) &= k_0 \\ W_{\texttt{msort}}(1) &= k_1 \\ W_{\texttt{msort}}(n) &\leq 2W_{\texttt{msort}}(n/2) + kn \end{split}$$

$$S_{\texttt{msort}}(0) = k_0$$

$$S_{\texttt{msort}}(1) = k_1$$

$$S_{\texttt{msort}}(n) \le S_{\texttt{msort}}(n/2) + kn$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

1 Recurrence:

$$\begin{split} W_{\texttt{msort}}(0) &= k_0 \\ W_{\texttt{msort}}(1) &= k_1 \\ W_{\texttt{msort}}(n) &\leq 2W_{\texttt{msort}}(n/2) + kn \end{split}$$

$$\begin{split} S_{\texttt{msort}}(0) &= k_0\\ S_{\texttt{msort}}(1) &= k_1\\ S_{\texttt{msort}}(n) &\leq S_{\texttt{msort}}(n/2) + kn \end{split}$$

- 2 Work Tree...
- 3 Measurements

Height: $\log n$ Span on the *i*-th level: $\frac{kn}{2^i}$

1 Recurrence:

$$\begin{split} W_{\texttt{msort}}(0) &= k_0 \\ W_{\texttt{msort}}(1) &= k_1 \\ W_{\texttt{msort}}(n) &\leq 2W_{\texttt{msort}}(n/2) + kn \end{split}$$

$$\begin{split} S_{\texttt{msort}}(0) &= k_0\\ S_{\texttt{msort}}(1) &= k_1\\ S_{\texttt{msort}}(n) &\leq S_{\texttt{msort}}(n/2) + kn \end{split}$$

- 2 Work Tree...
- 3 Measurements

Height: $\log n$ Span on the *i*-th level: $\frac{kn}{2^i}$

4&5 Sum:

$$S(n) \approx \sum_{i=0}^{\log n} \frac{kn}{2^i} \le \sum_{i=0}^{\infty} \frac{kn}{2^i} = 2kn = O(n)$$
Parallelism and Trees 27 May 2020 27/

Jacob Neumann

Parallelism and Trees

- Work of msort was $O(n \log n)$
- Making recursive calls to msort in parallel decreased runtime to O(n) the span

- Work of msort was $O(n \log n)$
- \blacksquare Making recursive calls to msort in parallel decreased runtime to O(n) the span
- Unable to take further advantage of parallelism, because split and merge only made one recursive call

- Work of msort was $O(n \log n)$
- \blacksquare Making recursive calls to msort in parallel decreased runtime to O(n) the span
- Unable to take further advantage of parallelism, because split and merge only made one recursive call
- This is a shortcoming of lists themselves: they're an inherently sequential data structure and are thus limited in how much parallelism can be utilized

(pause for questions)

・ロト ・日下・ ・ ヨト

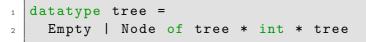
Section 4

J	а	С	0	b	Ν	le	u	n	а	n	n	
-	-	۲	۰	~			ч.		-	•••		

◆□▶ ◆□▶ ◆ □▶ ◆ □▶

We define a new type tree with the following syntax (which we'll discuss more tomorrow):

We define a new type tree with the following syntax (which we'll discuss more tomorrow):



We define a new type tree with the following syntax (which we'll discuss more tomorrow):

- 1 datatype tree =
 2 Empty | Node of tree * int * tree
- This declares a new type called tree whose constructors are Empty and Node.

We define a new type tree with the following syntax (which we'll discuss more tomorrow):

- 1 datatype tree =
 2 Empty | Node of tree * int * tree
- This declares a new type called tree whose constructors are Empty and Node. Empty is a *constant constructor* because it's just a value of type tree.

We define a new type tree with the following syntax (which we'll discuss more tomorrow):

6.5

```
1 datatype tree =
2 Empty | Node of tree * int * tree
```

 This declares a new type called tree whose constructors are Empty and Node. Empty is a *constant constructor* because it's just a value of type tree. Node takes in an argument of type tree*int*tree and produces another tree.

We define a new type tree with the following syntax (which we'll discuss more tomorrow):

```
1 datatype tree =
2 Empty | Node of tree * int * tree
```

- This declares a new type called tree whose constructors are Empty and Node. Empty is a *constant constructor* because it's just a value of type tree. Node takes in an argument of type tree*int*tree and produces another tree.
- All trees are either of the form Empty or Node (L,x,R) for some x : int (referred to as the *root* of the tree), some L : tree (referred to as the *left subtree*), and some R : tree (referred to as the *right subtree*)

Height (or *depth*): 6.6

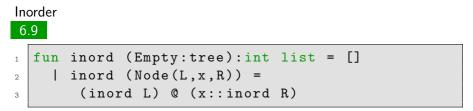
1	fun	height	(Empty:tree):	int = 0	
2		height	$(Node(L, _, R))$	=	
3		1 + 1	<pre>Int.max(height</pre>	L,height	R)

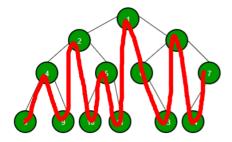
Height (or *depth*): 6.6

```
1 fun height (Empty:tree):int = 0
2 | height (Node(L,_,R)) =
3 1 + Int.max(height L,height R)
```

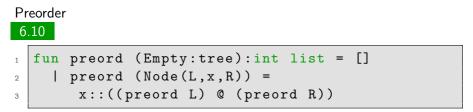

	<pre>size (Empty:tree):int = 0</pre>
2	size (Node(L,_,R)) =
3	1 + size L + size R

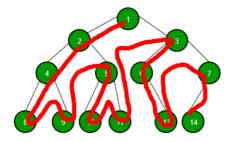
Traversals





Traversals





1	<pre>fun min (Empty:tree, default:int) = default</pre>
2	min (Node(L,x,R),default) =
3	let
4	(* Parallel *)
5	val (minL,minR) =
6	<pre>(min(L,default), min(R,default))</pre>
7	in
8	(* Constant-time *)
9	<pre>Int.min(x,Int.min(minL,minR))</pre>
10	end

◆□▶ ◆□▶ ◆ □▶ ◆ □▶

 ${\bf 0}\;$ Notion of size: depth d of the input tree

1 Recurrences:

$$W_{\min}(0) = k_0$$

$$W_{\min}(d) \le k_1 + 2W_{\min}(d-1)$$

 ${\bf 0}\;$ Notion of size: depth d of the input tree

1 Recurrences:

$$W_{\min}(0) = k_0$$

$$W_{\min}(d) \le k_1 + 2W_{\min}(d-1)$$

$$\begin{split} S_{\min}(0) &= k_0\\ S_{\min}(d) \leq k_1 + S_{\min}(d-1) \end{split}$$

 ${\bf 0}\;$ Notion of size: depth d of the input tree

1 Recurrences:

$$W_{\min}(0) = k_0$$

$$W_{\min}(d) \le k_1 + 2W_{\min}(d-1)$$

$$S_{\min}(0) = k_0$$

$$S_{\min}(d) \le k_1 + S_{\min}(d-1)$$

2-4 ... 5 $W_{\min}(d)$ is $O(2^d)$, $S_{\min}(d)$ is O(d)

 ${\bf 0}\;$ Notion of size: depth d of the input tree

1 Recurrences:

$$W_{\min}(0) = k_0$$

$$W_{\min}(d) \le k_1 + 2W_{\min}(d-1)$$

$$S_{\min}(0) = k_0$$

$$S_{\min}(d) \le k_1 + S_{\min}(d-1)$$

2-4 ...

5
$$W_{\min}(d)$$
 is $O(2^d)$, $S_{\min}(d)$ is $O(d)$

If the input tree is **balanced**, then $2^d \approx n$, where n is the size (number of nodes)

 ${\bf 0}\;$ Notion of size: number of nodes n of the input

1 Recurrences:

$$\begin{split} W_{\texttt{preord}}(0) &= k_0 \\ W_{\texttt{preord}}(n) &= 2W_{\texttt{preord}}(n/2) + kn \end{split}$$

NOTE: This assumes the tree is balanced

 ${\bf 0}\;$ Notion of size: number of nodes n of the input

1 Recurrences:

$$W_{\texttt{preord}}(0) = k_0$$
$$W_{\texttt{preord}}(n) = 2W_{\texttt{preord}}(n/2) + kn$$

NOTE: This assumes the tree is balanced

$$\begin{split} S_{\texttt{preord}}(0) &= k_0\\ S_{\texttt{preord}}(n) \leq S_{\texttt{preord}}(n/2) + kn \end{split}$$

 ${\bf 0}\;$ Notion of size: number of nodes n of the input

1 Recurrences:

$$W_{\texttt{preord}}(0) = k_0$$
$$W_{\texttt{preord}}(n) = 2W_{\texttt{preord}}(n/2) + kn$$

NOTE: This assumes the tree is balanced

$$\begin{split} S_{\texttt{preord}}(0) &= k_0\\ S_{\texttt{preord}}(n) \leq S_{\texttt{preord}}(n/2) + kn \end{split}$$

2-4 ... 5 $W_{preord}(n)$ is $O(n \log n)$, $S_{preord}(n)$ is O(n)

- Thursday: Structural induction on trees, datatypes
- Friday: Sorting with trees

Section 5

Lecture 6.5 : Trees in SML

Jacob Neumann

Parallelism and Trees

27 May 2020 39 / 51

Section 6

Arboretum

Jacob Neumann

Parallelism and Trees

▶ < ≣ ▶ ≣ ∽ ९ ୯ 27 May 2020 40 / 51

・ロト ・回ト ・回ト

6.12 Empty

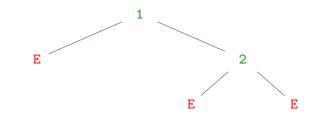
1

Е

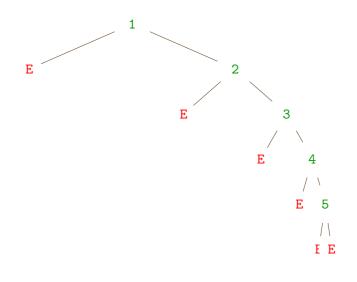
◆□▶ ◆□▶ ◆ □▶ ◆ □▶

Node (Empty, 1, Empty)

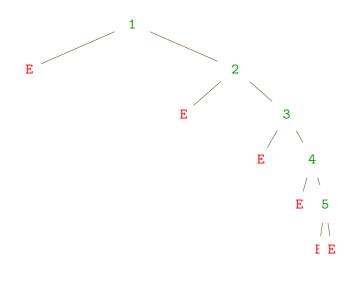
・ロト ・日下・ ・ ヨト



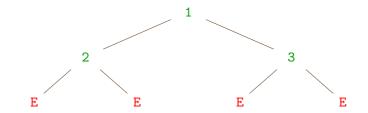
Node(Empty,1,Node(Empty,2,Empty))



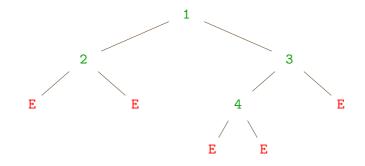
Node (Empty, 1, Node (Empty, 2, Node (Empty, 3, Node (Empty, 4, Node (Empty, 5, Empty)))))



Node (Empty, 1, Node (Empty, 2, Node (Empty, 3, Node (Empty, 4, Node (Empty, 5, Empty)))))

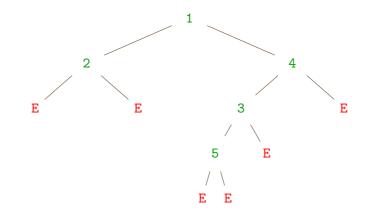


Node(Node(Empty,2,Empty),1,Node(Empty,3,Empty)
)

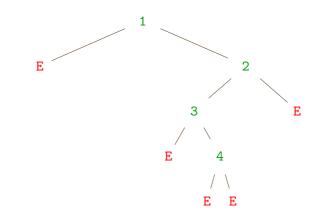


Node(Node(Empty,2,Empty),1,Node(Node(Empty,4, Empty),3,Empty))

Jacob	Neumann
-------	---------



Node(Node(Empty,2,Empty),1,Node(Node(Node(Empty,5,Empty),3,Empty),4,Empty))

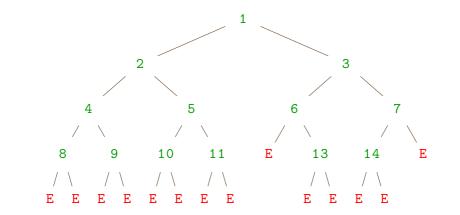


6.19

1

Node(Empty,1,Node(Node(Empty,3,Node(Empty,4, Empty)),2,Empty))

Jacob Neumann



Node (Node (Node (Empty, 8, Empty), 4, Node (Empty, 9, Empty)), 2, Node (Node (Empty, 10, Empty) ,5, Node (Empty, 11, Empty))), 1, Node (Node (Empty ,6, Node (Empty, 13, Empty)), 3, Node (Node (Empty ,14, Empty), 7, Empty))) Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶