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Section 1

Recap: Work Analysis of Recursive Functions

Jacob Neumann Parallelism and Trees 27 May 2020 2 / 51



The Tree Method

0 How you’re quantifying input size

1 Recurrence

2 Description of work tree

3 Measurements of work tree (height, and width at each level)

4 Summation

5 Big-O
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1 Recurrence:

W (0) = k0

W (n) = k1 + k2n+W (n− 1)

2 Work Tree

3 Measurements
Height: n Work on the i-th level: k1 + k2(n− i)

4 Sum:

W (n) ≈ k0 +
n∑

i=0

(k1 + k2(n− i)) = . . .

5 Big O:
W (n) is O(n2)
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Section 2

Asymptotic Analysis of Multi-Step Algorithms
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Sorting

Sorting is a classic algorithmic problem in computer science: finding the
fastest way to put all the elements of a list in order.

A value [x_1 ,...,x_n] : int list is sorted if for each
i = 1, . . . , n− 1, Int.compare(x_i ,x_(i+1)) 6∼= GREATER .

Or, recursively: a value v:int list is sorted if either v=[] or
v=[x] for some x, or v=x::x’::xs where
Int.compare(x,x’) 6∼= GREATER and x’::xs is sorted.
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Spec

6.0

1 fun isSorted ([]: int list):bool = true

2 | isSorted [x] = true

3 | isSorted (x::x’::xs) =

4 (x<=x’) andalso isSorted(x’::xs)

sort : int list -> int list

REQUIRES: true
ENSURES: sort(L) evaluates to a sorted permutation of L

A “permutation” of L is just a list that contains the same elements the
same number of times as L, just in a possibly different order. So
[1,1,2,3] is a permutation of [3,1,2,1] but not of [3,2,1].
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Sorting Algorithms

There are many sorting algorithms: insertion sort, quick sort, merge sort,
bubble sort, . . .

We’ll be focusing on merge sort, which consists of the following three
steps:

1 Split the input list in half

2 Sort each half

3 merge the sorted halves together to obtain a sorted whole
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Specs

split : int list -> int list * int list

REQUIRES: true
ENSURES: split L evaluates to (A,B) where A and B differ in
length by at most one, and A@B is a permutation of L

merge : int list * int list -> int list

REQUIRES: A and B are sorted
ENSURES: merge(A,B) evaluates to a sorted permutation of A@B

msort : int list -> int list

REQUIRES: true
ENSURES: msort(L) evaluates to a sorted permutation of L
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split

split : int list -> int list * int list

REQUIRES: true
ENSURES: split L evaluates to (A,B) where A and B differ in
length by at most one, and A@B is a permutation of L

6.1

1 fun split ([]: int list) = ([] ,[])

2 | split [x] = ([x],[])

3 | split (x::x’::xs) =

4 let

5 val (A,B) = split xs

6 in

7 (x::A,x’::B)

8 end
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merge

merge : int list * int list -> int list

REQUIRES: A and B are sorted
ENSURES: merge(A,B) evaluates to a sorted permutation of A@B

6.2

1 fun merge (L1:int list ,[]: int list) = L1

2 | merge ([],L2) = L2

3 | merge (x::xs ,y::ys) =

4 (case Int.compare(x,y) of

5 GREATER => y:: merge(x::xs ,ys)

6 | _ => x::merge(xs,y::ys))
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msort

msort : int list -> int list

REQUIRES: true
ENSURES: msort(L) evaluates to a sorted permutation of L

6.3

1 fun msort ([]: int list):int list = []

2 | msort [x] = [x]

3 | msort L =

4 let

5 val (A,B) = split L

6 in

7 merge(msort A,msort B)

8 end
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Analysis

6.1

1 fun split ([]: int list) = ([] ,[])

2 | split [x] = ([x],[])

3 | split (x::x’::xs) =

4 let

5 val (A,B) = split xs

6 in

7 (x::A,x’::B)

8 end

0 Measure of size: length of input list

1

Wsplit(0) = k0

Wsplit(1) = k1

Wsplit(n) = k2 +Wsplit(n− 2)
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Analysis

0 Measure of size: length of input list

1

Wsplit(0) = k0

Wsplit(1) = k1

Wsplit(n) = k2 +Wsplit(n− 2)

2-4 . . .

5 Wsplit(n) is O(n)
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Analysis

6.2

1 fun merge (L1:int list ,[]: int list) = L1

2 | merge ([],L2) = L2

3 | merge (x::xs ,y::ys) =

4 (case Int.compare(x,y) of

5 GREATER => y:: merge(x::xs ,ys)

6 | _ => x::merge(xs,y::ys))

0 Measure of size: sum of lengths of input lists

1

Wmerge(0) = k0

Wmerge(n) ≤ k1 +Wmerge(n− 1)

2-4 . . .

5 Wmerge(n) is O(n)
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Analysis

6.4

1 fun msort [] = [] | msort [x] = [x]

2 | msort (L:int list):int list =

3 let (* O(|L|) *)

4 val (A,B) = split L

5 in

6 (* O(|A|+|B|) W(|A|) W(|B|) *)

7 merge ( msort A, msort B)

8 end

0 Measure of size: length of input list
1

Wmsort(0) = k0

Wmsort(1) = k1

Wmsort(n) ≤ k2 + k3n+Wmsort

(n
2

)
+Wmsort

(
n− n

2

)
+ k4n

≈ 2Wmsort(n/2) + kn
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1 Recurrence:

Wmsort(0) = k0

Wmsort(1) = k1

Wmsort(n) ≤ 2Wmsort(n/2) + kn

2 Work Tree
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1 Recurrence:

Wmsort(0) = k0

Wmsort(1) = k1

Wmsort(n) ≤ 2Wmsort(n/2) + kn

2 Work Tree
3 Measurements

Height: log n Work on the i-th level: 2i kn
2i

= kn

4 Sum:

W (n) ≈
logn∑
i=0

kn

5 Big O:
W (n) is O(n log n)
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(pause for questions)
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Section 3

Parallel Cost Analysis
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Opportunity for parallelism

merge(msort A, msort B)

Since this is functional code, there’s no dependency between the
evaluation of msort A and the evaluation of msort B

An intelligent scheduler (with access to enough processors) could
assign these evaluation processes to different processors, and have
them calculated at the same time

This is known as an “opportunity for parallelism”
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val (x,y) = (e1 ,e2)

Opportunity for Parallelism

val x = e1

(*doesn ’t depend on

x*)

val y = e2

Opportunity for Parallelism

val x = e1

(* DOES depend on x

*)

val y = e2

NOT an opportunity

val x = case e1 of

p1 => e2

| ...

NOT an opportunity

val z = e1 e2

NOT an opportunity
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Work and Span

The work (sequential runtime) of a function is the number steps it
will take to evaluate, when we do not take advantage of any
parallelism

The span (parallel runtime) of a function is the number of steps it
will take to evaluate, when we take advantage of all opportunities
for parallelism (we assume we have enough processors to do so)

We will express both as a big-O complexity class, representing how
the runtime grows as the input size grows

We will obtain both by analyzing the code, obtaining recurrences,
and solving those recurrences (using the tree method) to obtain the
big-O complexity
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Calculating Work and Span

val x = (e1 , e2)

Wx = We1 +We2

Sx = max (Se1 , Se2)

If we assume that e1 and e2 take approximately the same amount of
time to evaluate, then

Wx = 2We1 Sx = Se1 = Se2
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split doesn’t have any parallelism

6.1

1 fun split ([]: int list) = ([] ,[])

2 | split [x] = ([x],[])

3 | split (x::x’::xs) =

4 let

5 val (A,B) = split xs

6 in

7 (x::A,x’::B)

8 end

1

Ssplit(0) = k0

Ssplit(1) = k1

Ssplit(n) = k2 + Ssplit(n− 2)

5 Ssplit(n) is O(n)

Jacob Neumann Parallelism and Trees 27 May 2020 25 / 51



split doesn’t have any parallelism

6.1

1 fun split ([]: int list) = ([] ,[])

2 | split [x] = ([x],[])

3 | split (x::x’::xs) =

4 let

5 val (A,B) = split xs

6 in

7 (x::A,x’::B)

8 end

1

Ssplit(0) = k0

Ssplit(1) = k1

Ssplit(n) = k2 + Ssplit(n− 2)

5 Ssplit(n) is O(n)

Jacob Neumann Parallelism and Trees 27 May 2020 25 / 51



merge doesn’t either

6.2

1 fun merge (L1:int list ,[]: int list) = L1

2 | merge ([],L2) = L2

3 | merge (x::xs ,y::ys) =

4 (case Int.compare(x,y) of

5 GREATER => y:: merge(x::xs ,ys)

6 | _ => x::merge(xs,y::ys))

1

Smerge(0) = k0

Smerge(n) ≤ k1 + Smerge(n− 1)

5 Smerge(n) is O(n)
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But msort does

1 Recurrence:

Wmsort(0) = k0

Wmsort(1) = k1

Wmsort(n) ≤ 2Wmsort(n/2) + kn

Smsort(0) = k0

Smsort(1) = k1

Smsort(n) ≤ Smsort(n/2) + kn

2 Work Tree. . .
3 Measurements

Height: log n Span on the i-th level: kn
2i

4&5 Sum:

S(n) ≈
logn∑
i=0

kn

2i
≤

∞∑
i=0

kn

2i
= 2kn = O(n)
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Conclusions

Work of msort was O(n log n)

Making recursive calls to msort in parallel decreased runtime to
O(n) – the span

Unable to take further advantage of parallelism, because split

and merge only made one recursive call

This is a shortcoming of lists themselves: they’re an inherently
sequential data structure and are thus limited in how much
parallelism can be utilized
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(pause for questions)
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Section 4

Trees
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Binary trees in SML

We define a new type tree with the following syntax (which we’ll
discuss more tomorrow):

6.5

1 datatype tree =

2 Empty | Node of tree * int * tree

This declares a new type called tree whose constructors are
Empty and Node . Empty is a constant constructor because it’s
just a value of type tree . Node takes in an argument of type
tree*int*tree and produces another tree .

All trees are either of the form Empty or Node(L,x,R) for some
x : int (referred to as the root of the tree), some L : tree

(referred to as the left subtree), and some R : tree (referred to
as the right subtree)
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Basic Quantities

Height (or depth):
6.6

1 fun height (Empty:tree):int = 0

2 | height (Node(L,_,R)) =

3 1 + Int.max(height L,height R)

Size
6.7

1 fun size (Empty:tree):int = 0

2 | size (Node(L,_,R)) =

3 1 + size L + size R
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Traversals

Inorder
6.9

1 fun inord (Empty:tree):int list = []

2 | inord (Node(L,x,R)) =

3 (inord L) @ (x::inord R)
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Traversals

Preorder
6.10

1 fun preord (Empty:tree):int list = []

2 | preord (Node(L,x,R)) =

3 x::(( preord L) @ (preord R))
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Minimum

6.11

1 fun min (Empty:tree , default:int) = default

2 | min (Node(L,x,R),default) =

3 let

4 (* Parallel *)

5 val (minL ,minR) =

6 (min(L,default), min(R,default))

7 in

8 (* Constant -time *)

9 Int.min(x,Int.min(minL ,minR))

10 end
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Depth-Analysis of min

0 Notion of size: depth d of the input tree

1 Recurrences:

Wmin(0) = k0

Wmin(d) ≤ k1 + 2Wmin(d− 1)

Smin(0) = k0

Smin(d) ≤ k1 + Smin(d− 1)

2-4 . . .

5 Wmin(d) is O(2d), Smin(d) is O(d)

If the input tree is balanced, then 2d ≈ n, where n is the size (number
of nodes)
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Size-Analysis of preord

0 Notion of size: number of nodes n of the input

1 Recurrences:

Wpreord(0) = k0

Wpreord(n) = 2Wpreord(n/2) + kn

NOTE: This assumes the tree is balanced

Spreord(0) = k0

Spreord(n) ≤ Spreord(n/2) + kn

2-4 . . .

5 Wpreord(n) is O(n log n), Spreord(n) is O(n)
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Upcoming lectures

Thursday: Structural induction on trees, datatypes

Friday: Sorting with trees
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Section 5

Lecture 6.5 : Trees in SML
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Section 6

Arboretum
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6.12

1 Empty

Jacob Neumann Parallelism and Trees 27 May 2020 41 / 51



1

E E

6.13

1 Node(Empty ,1,Empty)
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1

E 2

E E

6.14

1 Node(Empty ,1,Node(Empty ,2,Empty))

Jacob Neumann Parallelism and Trees 27 May 2020 43 / 51



1

E 2

E 3

E 4

E 5

E E

6.15

1 Node(Empty ,1,Node(Empty ,2,Node(Empty ,3,Node(

Empty ,4,Node(Empty ,5,Empty)))))
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1

2

E E

3

E E

6.16

1 Node(Node(Empty ,2,Empty),1,Node(Empty ,3,Empty)

)
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1

2

E E

3

4

E E

E

6.17

1 Node(Node(Empty ,2,Empty),1,Node(Node(Empty ,4,

Empty) ,3,Empty))
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1

2

E E

4

3

5

E E

E

E

6.18

1 Node(Node(Empty ,2,Empty),1,Node(Node(Node(

Empty ,5,Empty),3,Empty),4,Empty))
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1

E 2

3

E 4

E E

E

6.19

1 Node(Empty ,1,Node(Node(Empty ,3,Node(Empty ,4,

Empty)) ,2,Empty))
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1

2

4

8

E E

9

E E

5

10

E E

11

E E

3

6

E 13

E E

7

14

E E

E

6.20

1 Node(Node(Node(Node(Empty ,8,Empty),4,Node(

Empty ,9,Empty)),2,Node(Node(Empty ,10, Empty)

,5,Node(Empty ,11, Empty))),1,Node(Node(Empty

,6,Node(Empty ,13, Empty)),3,Node(Node(Empty

,14, Empty),7,Empty)))
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Thank you!
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