
Lecture 3
Principles of Functional Programming

Summer 2020

Lists & Structural Induction

One thing leads to another. . .

Section 1

Another word on pattern matching

Jacob Neumann Lists & Structural Induction 21 May 2020 2 / 24

Syntax

Recall that we had several ways of pattern matching:

Lambda expression clauses:

val isZeroOrOne : int -> bool

= fn 0 => true | 1 => true | _ => false

fun declaration clauses

fun fact (0: int):int = 1

| fact n = n * fact(n-1)

case expressions

fun fact (n:int):int =

case n of

0 => 1

| _ => n * fact(n-1)

val declarations

val 8 = power 3

Jacob Neumann Lists & Structural Induction 21 May 2020 3 / 24

Allowed patterns

Constructors

fn true => e1 | false => e2

Variable names

fn (x:int) => x

Wildcards

fn (_ : string) => 2

Tuples of patterns

fun foo ((0 ,0),_) = "a"

| foo ((_,0) ,(7,_)) = "b"

| foo (_, (8,8)) = "c"

| foo _ = "d"

Jacob Neumann Lists & Structural Induction 21 May 2020 4 / 24

Not patterns

Function applications

(* Doesn ’t work *)

val m+n = 2

val (s1 ^ s2) = "hello world"

Non-match-able types

(* Doesn ’t work *)

val (fn x => e) : int -> string = f

Repetitive patterns

(* Doesn ’t work *)

fun equal (m:int ,m:int) = true

| equal _ = false

Jacob Neumann Lists & Structural Induction 21 May 2020 5 / 24

Comparing cases

case true of

true => 1

| b => 2

case true of

b => 2

| true => 1

Jacob Neumann Lists & Structural Induction 21 May 2020 6 / 24

bool casing

Note: the following are equivalent:

case b of

true => e1

| false => e2

if b then e1 else e2

Common error: the “flase” bug

3.0

1 case b of

2 flase => 2

3 | true => 1

Jacob Neumann Lists & Structural Induction 21 May 2020 7 / 24

int casing

3.1

1 (* REQUIRES: n>=0 *)

2 fun divByThree (0: int):bool = true

3 | divByThree 1 = false

4 | divByThree 2 = false

5 | divByThree n = divByThree(n-3)

(* Doesn ’t work *)

fun abs 0 = 0

| abs ∼n = n

| abs n = n

fun abs 0 = 0

| abs n = if n<0 then ∼n else n

Jacob Neumann Lists & Structural Induction 21 May 2020 8 / 24

Quadrants

quadrant : int * int -> string

REQUIRES: true
ENSURES: quadrant(x,y) evaluates to either "I", "II",
"III", "IV" or "boundary", if (x,y) is in the first, second,
third, fourth quadrant, or on one of lines, respectively

Jacob Neumann Lists & Structural Induction 21 May 2020 9 / 24

Version 1

3.2

1 fun quadrantV1 (m:int ,n:int):string =

2 if m=0 orelse n=0

3 then "boundary"

4 else if m>0

5 then if n>0

6 then "I"

7 else "IV"

8 else if n<0

9 then "II"

10 else "III"

Jacob Neumann Lists & Structural Induction 21 May 2020 10 / 24

Version 2

3.3

1 fun quadrantV2 (0,_) = "boundary"

2 | quadrantV2 (_,0) = "boundary"

3 | quadrantV2 (m:int ,n:int):string =

4 if m>0

5 then if n>0

6 then "I"

7 else "IV"

8 else if n<0

9 then "II"

10 else "III"

Jacob Neumann Lists & Structural Induction 21 May 2020 11 / 24

The order type

SML has a built-in type to encode orderings, order .

There are three constructors of type order :

LESS EQUAL GREATER

These are also the only values of this type

The following values are built-in to SML:

val Int.compare

: int * int -> order

val String.compare

: string * string -> order

Jacob Neumann Lists & Structural Induction 21 May 2020 12 / 24

3.4

1 fun quadrant (m:int ,n:int):string =

2 case (Int.compare(m,0),Int.compare(n,0)) of

3 (EQUAL , _) => "boundary"

4 | (_ , EQUAL) => "boundary"

5 | (GREATER ,GREATER) => "I"

6 | (LESS ,GREATER) => "II"

7 | (LESS ,LESS) => "III"

8 | (GREATER ,LESS) => "IV"

Jacob Neumann Lists & Structural Induction 21 May 2020 13 / 24

Section 2

Lists

Jacob Neumann Lists & Structural Induction 21 May 2020 14 / 24

The list type

For each type codet, there is a type

t list

of lists of elements of t

There are two constructors of type t list :

[]: t list

If x:t and xs:t list , then

(x::xs) : t list

The values of type t list are lists [x1,x2 ,...,xn],
including []. This is just syntactic sugar for [] and ::, however:

[1]: int list is 1::[]

["functions","are","values"] : string list is
just "functions"::"are"::"values"::[]

Jacob Neumann Lists & Structural Induction 21 May 2020 15 / 24

len : int list -> int

REQUIRES: true
ENSURES: len L evaluates to the length of L

3.5

1 fun len ([] : int list):int = 0

2 | len (x::xs) = 1 + len xs

3

4 val 5 = len [1,2,3,4,5]

5 val 2 = len [∼5000 ,19]

6 val 0 = len []

Jacob Neumann Lists & Structural Induction 21 May 2020 16 / 24

(op @) : int list * int list -> int list

REQUIRES: true
ENSURES: If L1 is a list of length m and L2 is a lsit of length n,
then L1@L2 evaluates to a list of length m+ n whose first m
elements are the elements of L1 (in the same order they appear in
L1) and whose last n elements are the elements of L2 (in the same
order they appear in L2)

3.6

1 infix @

2 fun ([]: int list) @ (L:int list) = L

3 | (x::xs) @ L = x::(xs@L)

4

5 val [1,2,3,4] = [1,2]@[3,4]

6 val [1,2] = []@[1,2]

7 val [1,2] = [1,2]@[]

Jacob Neumann Lists & Structural Induction 21 May 2020 17 / 24

rev : int list -> int list

REQUIRES: true
ENSURES: rev L evaluates to a list containing exactly the
elements of L, in the opposite order they appeared in L

3.7

1 fun rev ([]: int list):int list = []

2 | rev (x::xs) = (rev xs)@[x]

3

4 val [3,2,1] = rev [1,2,3]

5 val [] = rev []

Jacob Neumann Lists & Structural Induction 21 May 2020 18 / 24

A claim

I claim that, for all types t and all values L : t list ,

len(rev L) ∼= len L

How do we prove this?

Jacob Neumann Lists & Structural Induction 21 May 2020 19 / 24

Section 3

Structural Induction

Jacob Neumann Lists & Structural Induction 21 May 2020 20 / 24

The Principle of Structural Induction on Lists

Let t be some type. In order to show that a statement P holds of all
values L:t list , it suffices to show:

(BC) P ([]) holds

(IS) Assuming P (xs) holds for some xs:t list (IH), show for
any value x:t that P (x::xs) holds

Why does it work? Well, every value of type t list is either [] or of
the form x::xs for some x,xs.

P ([]) implies P ([1]) implies P ([4,1]) implies P ([3,4,1]) implies . . .

Jacob Neumann Lists & Structural Induction 21 May 2020 21 / 24

Example: Totality of len

Theorem

For all values L:int list , len L evaluates to some value

Proof:
BC: L=[]
WTS: len [] evaluates to a value

len [] =⇒ 0 (first clause of len)

IS: L=x::xs for some x:t and some xs:t list

IH: len xs evaluates to some value.
WTS: len (x::xs) evaluates to a value

len (x::xs) =⇒ 1 + len xs (second clause of len)

=⇒ 1 + v (for some value v, by (IH))

=⇒ v’ (for some value v’)

Jacob Neumann Lists & Structural Induction 21 May 2020 22 / 24

Another one

Theorem

For all values L1:int list and L2:int list ,

len(L1@L2) ∼= len(L1) + len(L2)

Proof: Left as exercise (hint: induct on L1)

Jacob Neumann Lists & Structural Induction 21 May 2020 23 / 24

Thank you!

Jacob Neumann Lists & Structural Induction 21 May 2020 24 / 24

	Another word on pattern matching
	Lists
	Structural Induction

