Lecture 3
Principles of Functional Programming
Summer 2020

/\

Lists & Structural Induction

«A40>» 4F» «AEF» «E>» = Q>

Section 1

Another word on pattern matching

Jacob Neumann Lists & Structural Induction 21 May 2020 2/24

Recall that we had several ways of pattern matching:
m Lambda expression clauses:

val isZeroOrOne : int -> bool
= fn 0 => true | 1 => true | _ => false
m fun declaration clauses
fun fact (0:int) :int = 1
| fact n = n * fact(n-1)
B case expressions

fun fact (n:int):int =
case n of
0 =>1

I => n *x fact(n-1)

m val declarations

val 8 = power 3

Jacob Neumann Lists & Structural Induction 21 May 2020 3/24

Allowed patterns

m Constructors

fn true => el | false => e2

m Variable names

fn (x:int) => x
m Wildcards
fn (_ : string) => 2
m Tuples of patterns
fun foo ((0,0),_) = "a"
| foo ((_,0),(7,_)) = "b"
| foo (_, (8,8)) = "c¢"
| foo = "q"

Jacob Neumann Lists & Structural Induction 21 May 2020 4/24

Not patterns

m Function applications

(* Doesn’t work *)
val m+n = 2
val (s1 - s2) = "hello world"

m Non-match-able types

(x Doesn’t work x*)

val (fn x => e) : int -> string = f
m Repetitive patterns

(* Doesn’t work x*)
fun equal (m:int,m:int) = true
| equal _ = false

Jacob Neumann Lists & Structural Induction 21 May 2020 5/24

Comparing cases

case true of
true => 1
| b => 2

case true of

b => 2
| true => 1

Jacob Neumann Lists & Structural Induction 21 May 2020 6/24

Note: the following are equivalent:

case b of
true => el
| false => e2

if b then el else e2

Common error: the “flase” bug

1 |case b of
2 flase => 2
3 | true => 1

Jacob Neumann Lists & Structural Induction 21 May 2020 7/24

int casing

1 | (* REQUIRES: n>=0 *)
> [fun divByThree (0:int) :bool = true

3 | divByThree 1 = false
a | divByThree 2 = false
5 | divByThree n = divByThree (n-3)

(* Doesn’t work x*)
fun abs 0 = 0

| abs ~n = n

| abs n = n

I
o

fun abs O
| abs n

if n<0 then ~n else n

Jacob Neumann Lists & Structural Induction 21 May 2020 8/24

o 4
3s
IT 2 I
1
6 -5 4 3 -2 -1 0 1.2 3 4 5 6
1 x-axis
I1I ? IV
3
4
quadrant : int * int -> string

REQUIRES: true

ENSURES: quadrant (x,y) evaluates to either "I", "I1",
"III", "IV" or "boundary",if (x,y) isin the first, second,
third, fourth quadrant, or on one of lines, respectively

Jacob Neumann Lists & Structural Induction 21 May 2020 9/24

1 |fun quadrantV1l (m:int,n:int):string =
2 if m=0 orelse n=0

3 then "boundary"

4 else if m>0

5 then if n>0

6 then "I

7 else "IV"

8 else if n<o0

9 then "II"

10 else "III"

LA

Jacob Neumann Lists & Structural Induction 21 May 2020 10/

+ |fun quadrantV2 (0,_) = "boundary"

2 | quadrantV2 (_,0) = "boundary"

3 | quadrantV2 (m:int,n:int):string =
4 if m>0

5 then if n>0

6 then "I"

7 else "IV"

8 else if n<o0

9 then "II"

10 else "III"

Jacob Neumann Lists & Structural Induction 21 May 2020 11/24

The order type

SML has a built-in type to encode orderings, order.

m There are three constructors of type order:
LESS EQUAL GREATER
m These are also the only values of this type

m The following values are built-in to SML:

val Int.compare
int * int -> order
val String.compare
string * string -> order

Jacob Neumann Lists & Structural Induction 21 May 2020 12 /24

1 |fun quadrant (m:int,n:int):string =

2 case (Int.compare(m,0),Int.compare(n,0)) of
3 (EQUAL, _) => "boundary"

(_ , EQUAL) => "boundary"
(GREATER , GREATER) => "I1"
(LESS,GREATER) => "II"

(LESS,LESS) => "IIIL"

(GREATER ,LESS) => "IV"

o

Jacob Neumann Lists & Structural Induction 21 May 2020 13 /24

Section 2

Lists

Jacob Neumann Lists & Structural Induction 21 May 2020 14 /24

The list type

m For each type codet, there is a type
t list

of lists of elements of t
m There are two constructors of type t list:

m[]: t list
milfx:tand xs:t 1list, then

(x::xs) : t list

m The values of type t 1list are lists [x1,%x2,...,xn],
including [1. This is just syntactic sugar for [] and : :, however:
m [1]:int listis 1::[]
m ["functions","are","values"] : string list is
just "functions"::"are"::"values"::[]

Jacob Neumann Lists & Structural Induction 21 May 2020 15 /24

len : int 1list -> int
REQUIRES: true
ENSURES: len L evaluates to the length of L

1 |fun len ([] : int 1list):int = O
2 | len (x::xs) = 1 + len xs

a|val 5 = len [1,2,3,4,5]
s |lval 2 = len [~5000,19]
¢ |lval 0 = len []

Jacob Neumann Lists & Structural Induction

21 May 2020

16 /24

(op @) : int list * int list -> int list
REQUIRES: true

ENSURES: If L1 is a list of length m and L2 is a Isit of length n,
then L1@L2 evaluates to a list of length m + n whose first m
elements are the elements of L1 (in the same order they appear in
L1) and whose last n elements are the elements of L2 (in the same
order they appear in L2)

1 |infix @
2 |[fun ([]:int list) @ (L:int list) = L
3 | (x::xs) @ L = x::(xs@L)

s [val [1,2,3,4] = [1,2]@[3,4]
¢ |lval [1,2] = [Je@[1,2]
7 |val [1,2] [1,2]@[]

Jacob Neumann Lists & Structural Induction 21 May 2020 17 /24

rev : int 1list -> int 1list

REQUIRES: true

ENSURES: rev L evaluates to a list containing exactly the
elements of L, in the opposite order they appeared in L

1+ |fun rev ([]:int 1list):int list = []
2 | rev (x::xs) = (rev xs)0@[x]

s |val [3,2,1] = rev [1,2,3]
s [val [] = rev []

Jacob Neumann Lists & Structural Induction 21 May 2020 18/24

A claim

| claim that, for all types t and all values L. : t 1list,
len(rev L) Z1len L

How do we prove this?

Jacob Neumann Lists & Structural Induction 21 May 2020 19 /24

Section 3

Structural Induction

Jacob Neumann Lists & Structural Induction 21 May 2020 20/24

The Principle of Structural Induction on Lists

Let t be some type. In order to show that a statement P holds of all
values L:t 1list, it suffices to show:
m (BC) P([1) holds
m (IS) Assuming P(xs) holds for some xs:t 1list (IH), show for
any value x: t that P(x: : xs) holds

Why does it work? Well, every value of type t 1ist is either [] or of
the form x: : xs for some x,xs.

P([]) implies P([1]) implies P([4,1]) implies P([3,4,1]) implies .

Jacob Neumann Lists & Structural Induction 21 May 2020 21/24

Example: Totality of len

For all values L : int 1ist, len L evaluates to some value

_

Proof-
BC: L=[]
WTS: 1en [] evaluates to a value

len [] =0 (first clause of len)

IS: L=x::xs forsome x:t and some xs:t list
IH: 1en xs evaluates to some value.
WTS: 1en (x::xs) evaluates to a value

len (x::xs) =1 + len xs (second clause of len)
=1 + v (for some value v, by (IH))
= v’ (for some value v)

Jacob Neumann Lists & Structural Induction 21 May 2020 22/24

For all values L1 :4int 1list and L2:int list,

len(L1@L2) = len(L1) + len(L2)

Proof: Left as exercise (hint: induct on L1)

Jacob Neumann Lists & Structural Induction 21 May 2020 23 /24

Thank you!

Jacob Neumann Lists & Structural 21 May 2020

	Another word on pattern matching
	Lists
	Structural Induction

