

Games II

Minimax and Alphabeta

Last Time

- Implemented playable games in SML
- Our game implementation consisted of:
 - A GAME (specifying rules, how to make moves, etc.)
 - PLAYERs (plays a particular GAME, provides function next_move assigning a "choice" of move to each state)
 - Games are refereed by a CONTROLLER, who facilitates play between two PLAYERs playing the same game.
- Implemented Nim, where states were of the form (s, Minnie) or (s, Maxie) for s: int nonnegative. A move is a positive int i which is less than or equal to Int.min(3,s).

Jacob Neumann Games II 18 June 2020 2

Making plays

We'll deal with 4 different kinds of players:

- Human players (our game library includes utilities to accept user input to determine next_move)
- Directly-implemented players (NimPlayer from tomorrow's lab)
- MiniMax players (this lecture)
- Alphabeta players (Lecture 22.5, games homework)

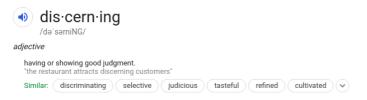
Jacob Neumann Games II 18 June 2020 3 / 41

Section 1

How to Build Smart PLAYERs

Jacob Neumann Games II 18 June 2020

What do we mean by smart?



We want to design our PLAYERs such that their next_move function makes decisions which generally lead to it winning the game more often. Contrast:

```
RunNim.play RunNim.HvM;
RunNim.play RunNim.HvP;
```

So what we want to do is build a player who "knows what's good for her": who is able to assess the moves available to her, decide which one has the most favorable outcome, and make the corresponding move her next_move.

Jacob Neumann Games II 18 June 2020 5

Game Trees

Formally, we make sense of games mathematically by examining the corresponding game tree. A game tree is a finitely-branching tree where

- The nodes represent *game states*
- The edges represent *moves*
- The root node is the current state of the game, and the rest of the tree represents different outcomes achieveable by a certain series of moves from the two players
- The children of a given node are the states reachable from that game state by the current player making a valid move.

We'll call our players 'Maxie' and 'Minnie'.

6/41

(Game Tree Example)

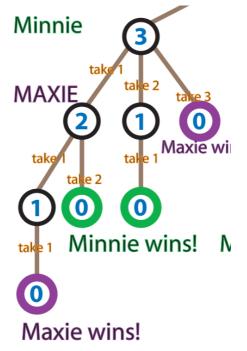
Jacob Neumann Games II 18 June 2020 7 / 41

Developing a game strategy

Game trees allow us to more easily make sense of the following observation:

A good human player is one who is thinking a few moves into the future. To decide which next move is best for her to take, she thinks through some scenarios of how the game *could* go *if* she were to make that move (and what their opponent might do in response, and how she could respond to that, and so on), and then pick the move with the most attractive range of possible outcomes.

Jacob Neumann Games II 18 June 2020 8 / 41



Developing a game strategy

Game trees allow us to depict the following observation:

A good human player is one who is thinking a few moves into the future. To decide which next move is best for them to take, they think through some scenarios of how the game *could* go *if* they were to make that move (and what their opponent might do in response, and how they could respond to that, and so on), and then pick the move with the most attractive range of possible outcomes.

To design smart computer PLAYERs which mimic this, we'll have our computer PLAYERs recursively explore the game tree, and determine the outcomes of play (assuming the players are playing optimally), ultimately to determine what move would be best from the current situation.

 Jacob Neumann
 Games II
 18 June 2020
 10 / 41

(Game Tree Example)

Jacob Neumann Games II 18 June 2020 11 / 41

Estimation Nation

- Problem: it's impractical (and often impossible) to visit every node of the tree
- Solution: explore some of the tree, and guess
 - Have a fixed 'search depth' d
 - $lue{}$ Explore the top d levels of the tree (i.e. the game states than can be reached from the current one in d moves or fewer)
 - When you hit your search depth, use your knowledge of the game to assign an appropriate value to that state, and treat that value as the value of the node.
- More precisely: we'll have a function estimate which takes a game state (for instance, a value of type Nim.State.t) and returns a "guess" of the goodness or badness of that state.

 Jacob Neumann
 Games II
 18 June 2020
 12 / 41

Estimators: Some design principles

An *estimator* for a game G is a function assigning "guesses" to each state to (perhaps roughly) indicate who's winning.

- The "guesses" will usually be numerical (e.g. ints): lower numbers better for Minnie, larger numbers better for Maxie. The scale is arbitrary: all that matters is the relative ordering of states.
- The goal here is to induce an ordering on states, i.e. articulate a sense in which states are "better" or "worse" than each other (from one player's perspective).
- We want "better" to mean "more likely to win" (as best as possible)
- A given GAME will have many possible estimators, with varying degrees of sophistication, and which may weight different factors differently. When we make PLAYERs who use these estimators to calculate their next_move, these differences will correspond to different playing styles or strategies.

Jacob Neumann Games II 18 June 2020 13 / 41

22.9

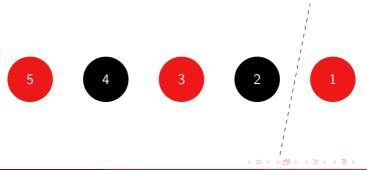
```
signature ESTIMATOR =
  sig
     structure Game : GAME
3
    type guess
5
     datatype est = Definitely of Game.Outcome.t
6
                     Guess of guess
7
8
    val compare : est * est -> order
     val toString : guess -> string
10
11
    val estimate : Game.State.t -> guess
12
  end
13
```

Notes about estimator

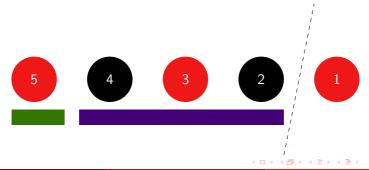
- Note that the only operation on values of type est is comparison (the function compare). We don't - in general - require guesses to be numbers at all, we just require that they be ordered.
- We **transparently** ascribe to this signature. While we don't require in general that guess is implemented as **int** or **real**, if we do happen to implement it that way we want to have access to the associated methods (e.g. from the basis structures Int and Real).

 Jacob Neumann
 Games II
 18 June 2020
 15 / 41

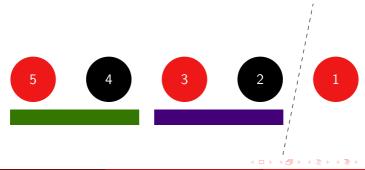
```
Player p can guarantee a win from (s,flip p)  iff \\ s \ mod \ 4 \cong 1 \\ \\ (remember \\ fun \ flip \ Maxie = Minnie \ | \ flip \ Minnie = Maxie) \\
```



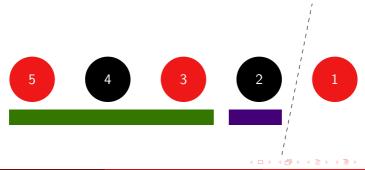
```
Player p can guarantee a win from (s,flip p)  iff \\ s \ mod \ 4 \cong 1 \\ \\ (remember \\ fun \ flip \ Maxie = Minnie \ | \ flip \ Minnie = Maxie) \\
```



```
Player p can guarantee a win from (s,flip p)  iff \\ s \mod 4 \cong 1 \\ \\ (remember \\ fun \ flip \ Maxie = Minnie \ | \ flip \ Minnie = Maxie) \\
```



```
Player p can guarantee a win from (s,flip p)  iff \\ s \ mod \ 4 \cong 1 \\ \\ (remember \\ fun \ flip \ Maxie = Minnie \ | \ flip \ Minnie = Maxie) \\
```



 Jacob Neumann
 Games II
 18 June 2020
 16 / 41

So, assuming the other player plays optimally, whoever's turn it is when s is of the form (4*k)+1 for some k:int will *lose*.

Jacob Neumann Games II 18 June 2020 17 / 41

This is somewhat *too* clean of an example: most games don't have perfect estimators. Rather, the best we can do is make pretty good guesses! To design an estimator, we'll usually use some combination of simple heuristics and more sophisticated theory.

For instance, here's a common heuristic for chess: for a chess piece p, let v(p) be given by the following chart

Symbol	<u> </u>		<u></u>	Ï	₩
Piece	pawn	knight	bishop	rook	queen
Value	1	3	3	5	9

Then put

$$\texttt{estimate(S)} = \left(\sum_{\substack{\text{Pieces p Maxie} \\ \text{has in play (in S)}}} v(p)\right) - \left(\sum_{\substack{\text{Pieces p Minnie} \\ \text{has in play (in S)}}} v(p)\right)$$

Jacob Neumann Games II 18 June 2020 18

Section 2

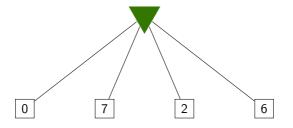
The MiniMax Algorithm

Jacob Neumann Games II 18 June 2020 19

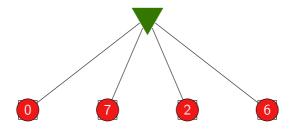
Takeaways

- We should assign each node an estimator guess, its "value".
- The value of a node should reflect who's winning from that node, which depends on the moves available from that state.
- Should assume players play optimally.

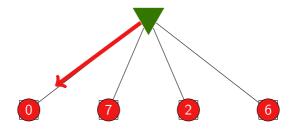
Jacob Neumann Games II 18 June 2020 20 /



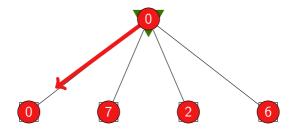
 Jacob Neumann
 Games II
 18 June 2020
 21 / 41



 Jacob Neumann
 Games II
 18 June 2020
 21 / 41

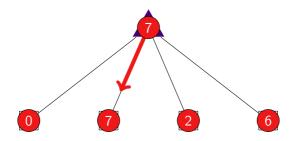


Jacob Neumann Games II 18 June 2020 21 / 4



Jacob Neumann Games II 18 June 2020 21 / 4

Maxie Search



 Jacob Neumann
 Games II
 18 June 2020
 22 / 41

The MiniMax Algorithm

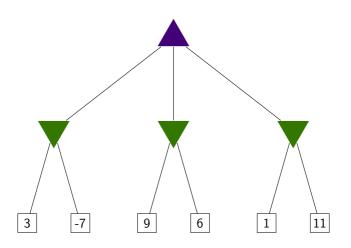
Fix a search depth d.

- 1 Traverse the game tree down to the d-th level. 1
- **2** Call the estimator to assign values to the *d*-th level.
- Work upwards, assigning values to nodes according to the Minnie and Maxie principles described above
 - For Minnie nodes: the value should be the minimum of the values of the child nodes
 - For Maxie nodes: the value should be maximum of the values of the child nodes.

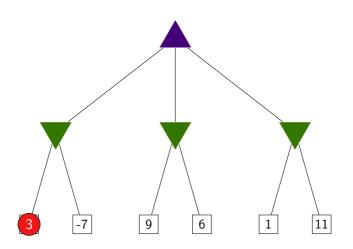
Once we've filled all the way to the top of the tree (our current state), then we can decide which move to make based on the estimated values.

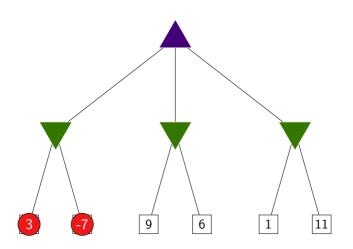
Jacob Neumann Games II 18 June 2020 23 / 41

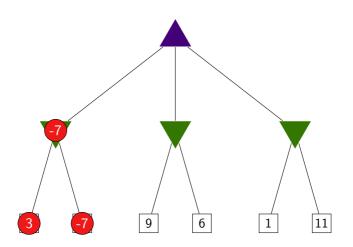
¹For every node encountered where the game is over, assign such nodes the value Definitely of whoever the winner is.

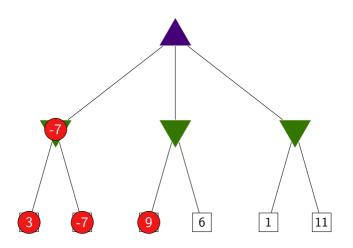


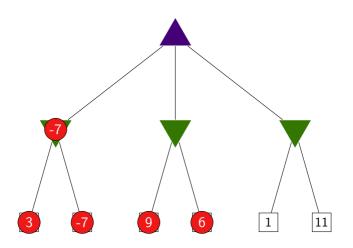
Jacob Neumann Games II 18 June 2020

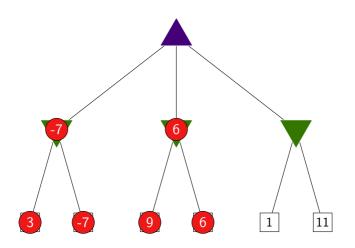


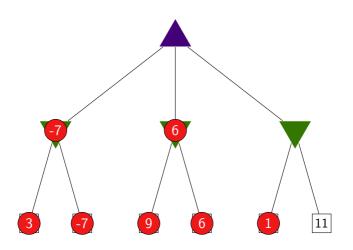


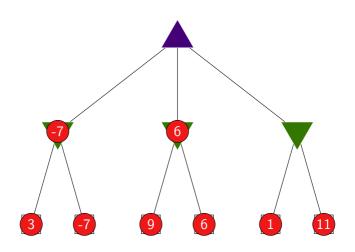


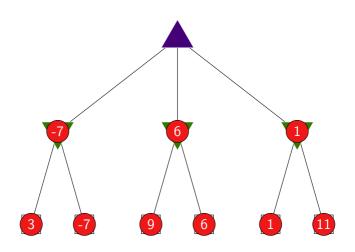


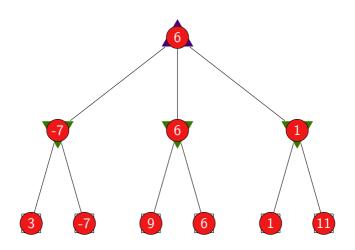


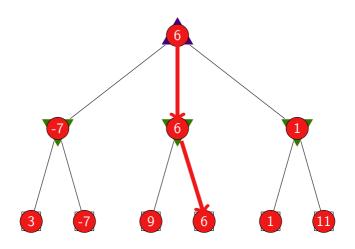












```
signature SETTINGS =
sig
structure Est : ESTIMATOR

val search_depth : int
end
```

```
functor MiniMax (Settings : SETTINGS):>PLAYER
where Game = Settings.Est.Game =
struct
structure Est = Settings.Est
structure Game = Est.Game
```

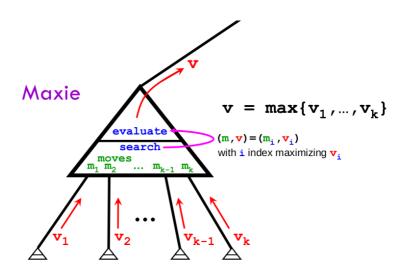
```
type edge = Game.Move.t * Est.est
1
    fun valueOf ((_,value) : edge) = value
2
    fun moveOf ((move,_) : edge) = move
3
4
    fun max ((m1,v1) : edge, (m2,v2) : edge) :
5
     edge =
      case Est.compare (v1, v2) of
6
        LESS \Rightarrow (m2, v2)
7
       8
    fun min ((m1,v1) : edge, (m2,v2) : edge) :
10
     edge =
      case Est.compare (v1, v2) of
11
        GREATER => (m2, v2)
12
       | _ = > (m1, v1)
13
```

```
reduce1 : ('a * 'a -> 'a) -> 'a Seq.seq -> 'a REQUIRES: g is total and associative, S is nonempty ENSURES: reduce1 g \langle x1, \ldots, xn \rangle \cong g(x1, g(x2, g(\ldots, xn)))
```

```
(* choose:Player.t -> edge Seq.seq -> edge *)

fun choose Player.Maxie = Seq.reduce1 max
| choose Player.Minnie = Seq.reduce1 min
```

 Jacob Neumann
 Games II
 18 June 2020
 27 / 41



 Jacob Neumann
 Games II
 18 June 2020
 28 / 41

```
(* search : int -> G.State.t -> edge
  (* REQUIRES: d > 0
  fun search (d : int) (s : Game.State.t):edge
3
     choose
       (Game.player s)
5
       (Seq.map
          (fn m => (m, evaluate
7
                           (d - 1)
8
                           (Game.play (s,m))))
          (Game.moves s)
10
11
```

```
(* evaluate : int -> Game.status -> Est.est
  (* REQUIRES: d >= 0
                                                 *)
  and evaluate (d : int) (st : Game.status) :
     Est.est =
    case st of
4
      Game.Playing s => (
5
        case d of
           0 => Est.Guess (Est.estimate s)
7
          => valueOf (search d s)
       Game.Done oc => Est.Definitely oc
10
```

22.16

```
val next_move =
moveOf o search Settings.search_depth
```

Jacob Neumann Games II 18 June 2020 30 / 41

Lecture 22.5 (to be released tonight)

- Advantages and disadvantages of MiniMax
- Saving some work: Alpha-Beta Pruning

Jacob Neumann Games II 18 June 2020 31 / 41

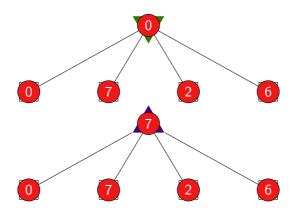
Thank you!

 Jacob Neumann
 Games II
 18 June 2020
 32 / 41

Games 2¹/₂

Alpha-Beta Pruning

Minimax



Jacob Neumann Games II 18 June 2020

Pros and Cons

Advantages of Minimax:

- Correctly determines optimal play
- Massively parallelizable

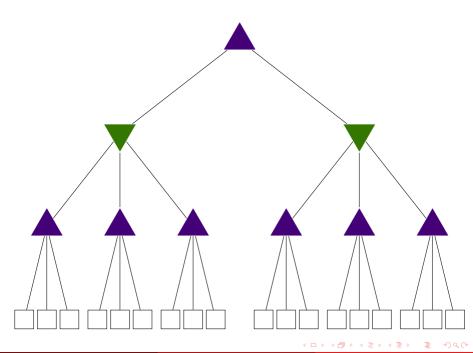
Disadvantages of Minimax:

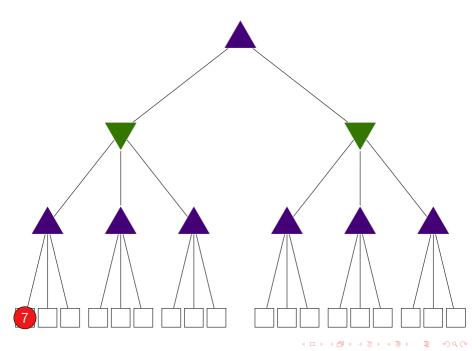
- Huge amount of work
- Indeed, often performs unnecessary computation

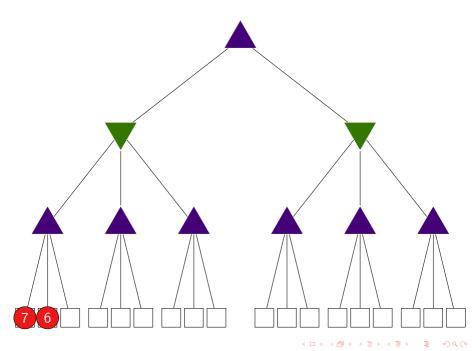
 Jacob Neumann
 Games II
 18 June 2020
 35 / 41

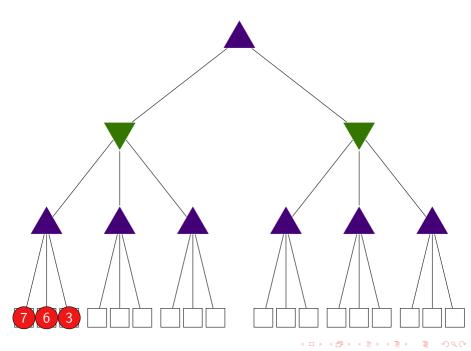
Section 3

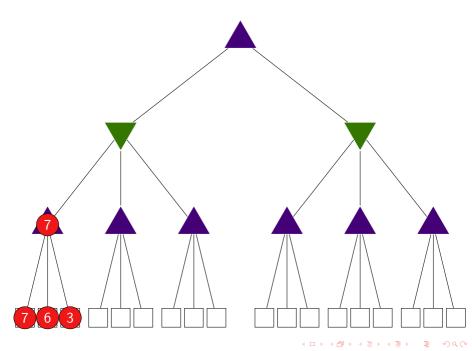
Alpha-Beta Pruning

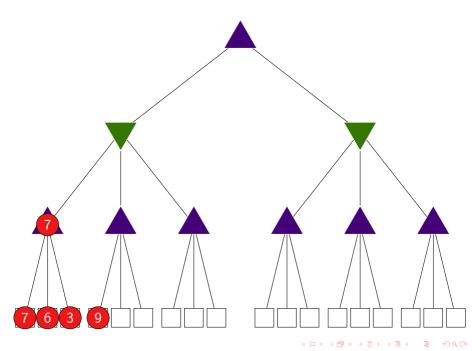


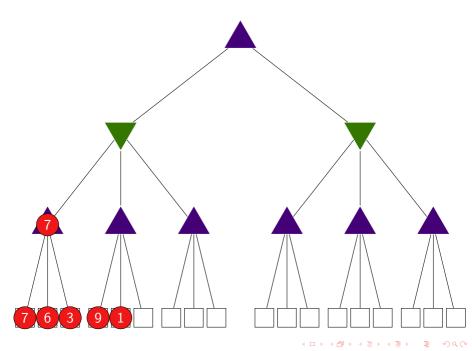


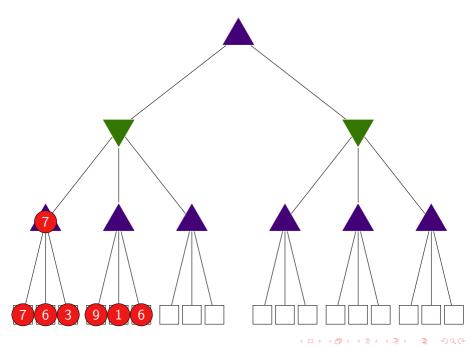


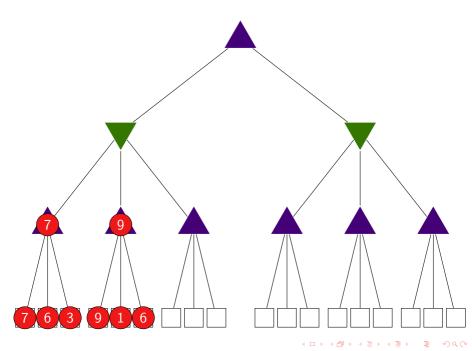


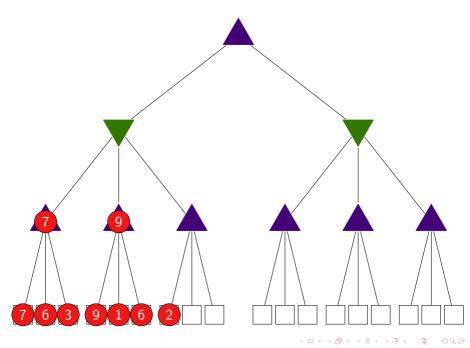


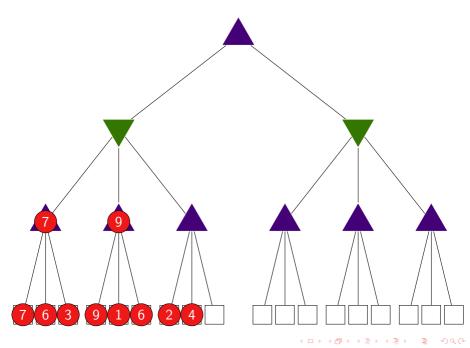


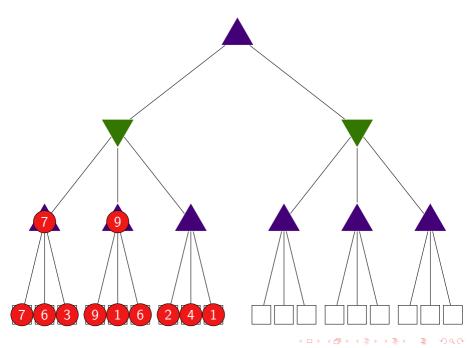


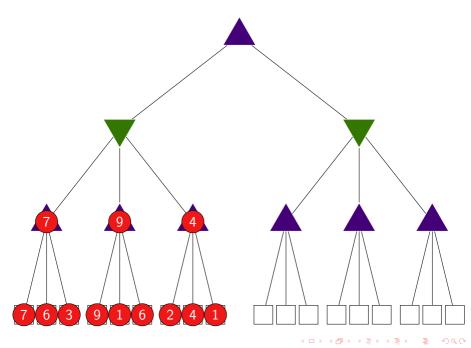


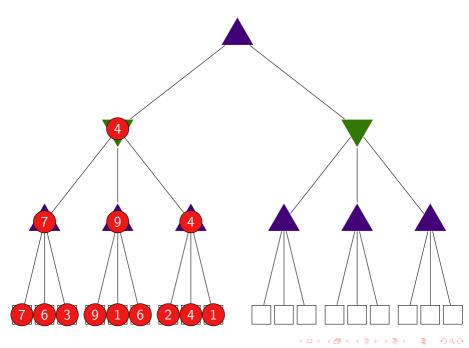


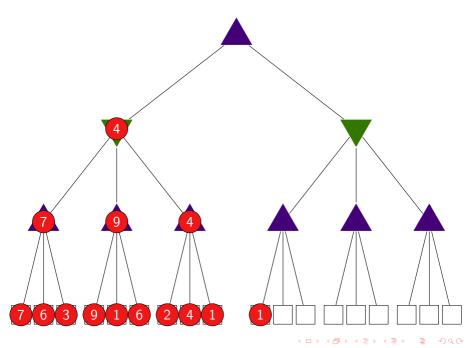


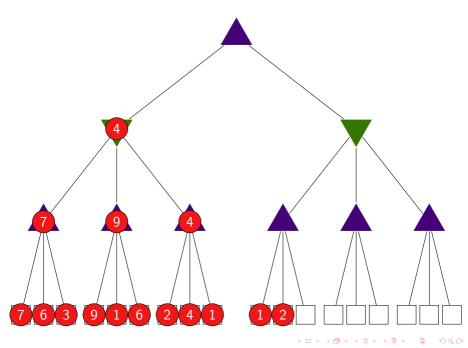


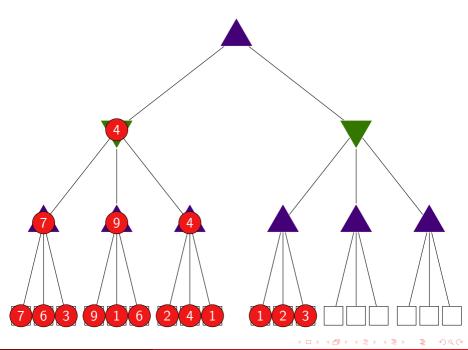


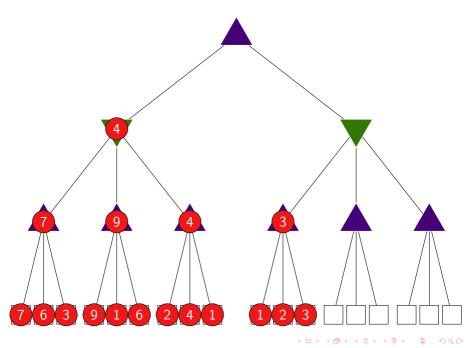


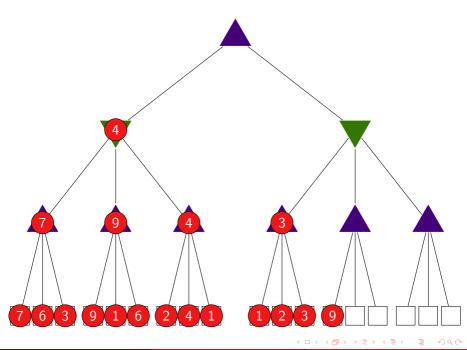


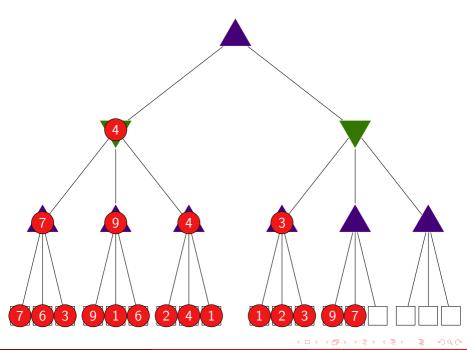


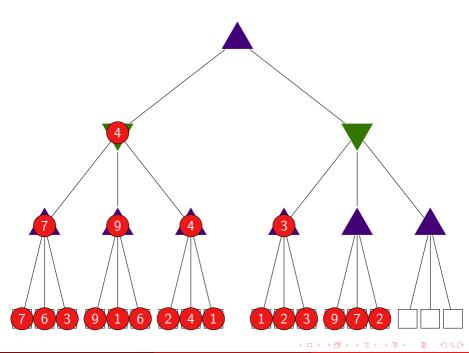


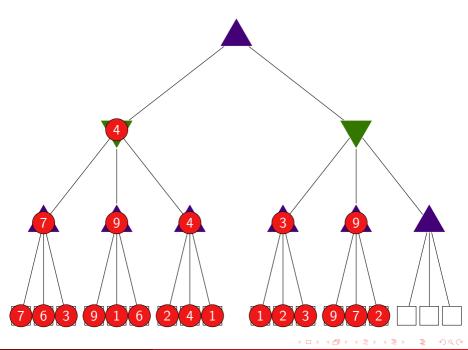


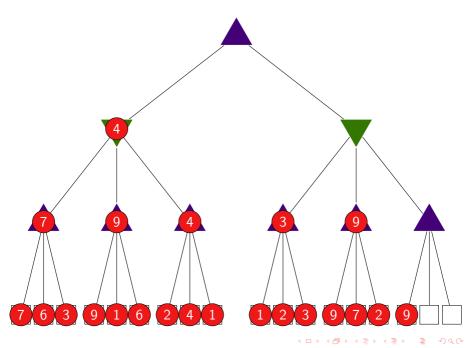


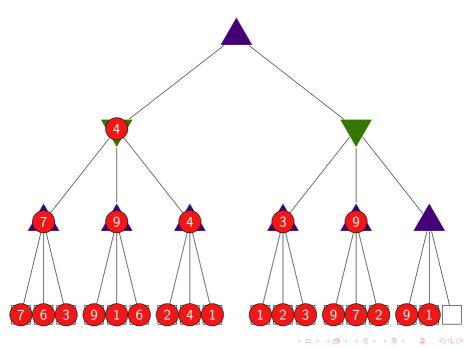


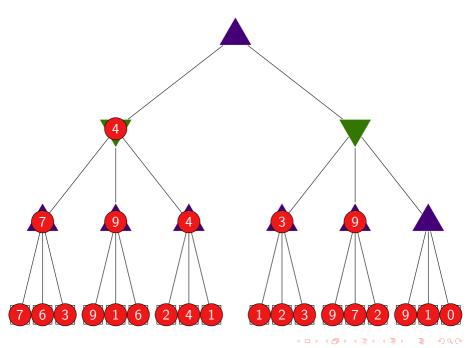


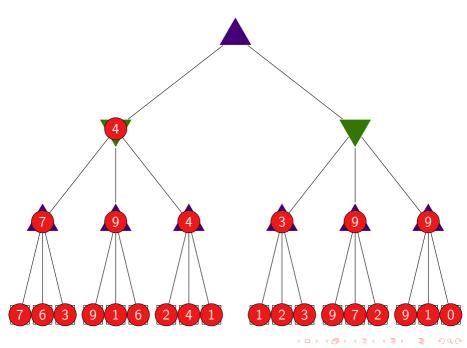


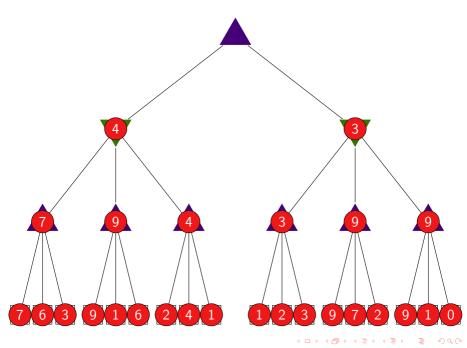


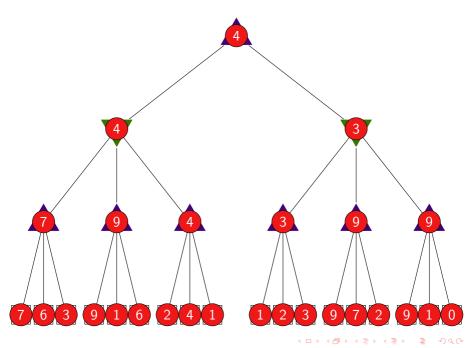




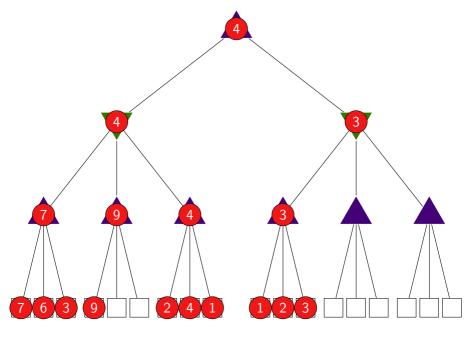




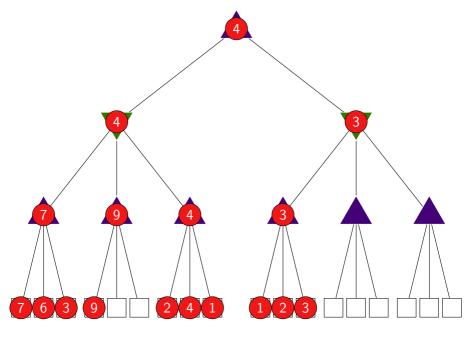




Jacob Neumann Games II 18 June 2020 37 / 41

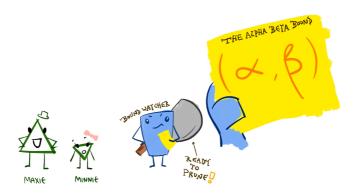


 Jacob Neumann
 Games II
 18 June 2020
 37 / 4



 Jacob Neumann
 Games II
 18 June 2020
 37 / 4

As we perform MiniMax, we want to keep track of "what can be guaranteed" to inform us when we're exploring an irrelevant subtree.



 Jacob Neumann
 Games II
 18 June 2020
 38 / 41

Idea

So, for every point along the minimax algorithm, there is some estimator guess value α , which represents the greatest value that **Maxie** can guarantee. Analogously, we'll keep track of some value β representing the least value that **Minnie** can guarantee. It must be the case that $\alpha \leq \beta$.

When **Minnie** encounters a node whose value is $\leq \alpha$, then she can "prune" the rest of the current subtree: **Maxie** won't let the game get to this point. If **Maxie** encounters a node whose value is $\geq \beta$, then she prunes.

Once the bound becomes invalid,

Handy Chart

	$x \le \alpha$	$\alpha < x < \beta$	$\beta \leq x$
Maxie	Ignore	Update α	Prune
Minnie	Prune	Update β	Ignore

Jacob Neumann Games II 18 June 2020 40

(Alphabeta example)

 Jacob Neumann
 Games II
 18 June 2020
 41 / 41