
Lecture 22
Principles of Functional Programming

Summer 2020

Games II

Minimax and Alphabeta



Last Time

Implemented playable games in SML

Our game implementation consisted of:

A GAME (specifying rules, how to make moves, etc.)
PLAYERs (plays a particular GAME , provides function next_move

assigning a “choice” of move to each state)
Games are refereed by a CONTROLLER , who facilitates play between
two PLAYERs playing the same game.

Implemented Nim, where states were of the form (s,Minnie) or
(s,Maxie) for s:int nonnegative. A move is a positive int i

which is less than or equal to Int.min(3,s).

Jacob Neumann Games II 18 June 2020 2 / 41



Making plays

We’ll deal with 4 different kinds of players:

Human players (our game library includes utilities to accept user
input to determine next_move)

Directly-implemented players (NimPlayer from tomorrow’s lab)

MiniMax players (this lecture)

Alphabeta players (Lecture 22.5, games homework)

Jacob Neumann Games II 18 June 2020 3 / 41



Section 1

How to Build Smart PLAYERs

Jacob Neumann Games II 18 June 2020 4 / 41



What do we mean by smart?

We want to design our PLAYERs such that their next_move function
makes decisions which generally lead to it winning the game more often.
Contrast:

RunNim.play RunNim.HvM;

RunNim.play RunNim.HvP;

So what we want to do is build a player who “knows what’s good for
her”: who is able to assess the moves available to her, decide which one
has the most favorable outcome, and make the corresponding move her
next_move .

Jacob Neumann Games II 18 June 2020 5 / 41



Game Trees

Formally, we make sense of games mathematically by examining the
corresponding game tree. A game tree is a finitely-branching tree where

The nodes represent game states

The edges represent moves

The root node is the current state of the game, and the rest of the
tree represents different outcomes achieveable by a certain series of
moves from the two players

The children of a given node are the states reachable from that
game state by the current player making a valid move.

We’ll call our players ‘Maxie’ and ‘Minnie’.

Jacob Neumann Games II 18 June 2020 6 / 41



(Game Tree Example)

Jacob Neumann Games II 18 June 2020 7 / 41



Developing a game strategy

Game trees allow us to more easily make sense of the following
observation:

A good human player is one who is thinking a few moves into the future.
To decide which next move is best for her to take, she thinks through
some scenarios of how the game could go if she were to make that
move (and what their opponent might do in response, and how she
could respond to that, and so on), and then pick the move with the

most attractive range of possible outcomes.

Jacob Neumann Games II 18 June 2020 8 / 41



Jacob Neumann Games II 18 June 2020 9 / 41



Developing a game strategy

Game trees allow us to depict the following observation:
A good human player is one who is thinking a few moves into the future.
To decide which next move is best for them to take, they think through
some scenarios of how the game could go if they were to make that
move (and what their opponent might do in response, and how they
could respond to that, and so on), and then pick the move with the
most attractive range of possible outcomes.
To design smart computer PLAYERs which mimic this, we’ll have our
computer PLAYERs recursively explore the game tree, and determine the
outcomes of play (assuming the players are playing optimally), ultimately
to determine what move would be best from the current situation.

Jacob Neumann Games II 18 June 2020 10 / 41



(Game Tree Example)

Jacob Neumann Games II 18 June 2020 11 / 41



Estimation Nation

Problem: it’s impractical (and often impossible) to visit every node
of the tree

Solution: explore some of the tree, and guess

Have a fixed ‘search depth’ d
Explore the top d levels of the tree (i.e. the game states than can be
reached from the current one in d moves or fewer)
When you hit your search depth, use your knowledge of the game to
assign an appropriate value to that state, and treat that value as the
value of the node.

More precisely: we’ll have a function estimate which takes a
game state (for instance, a value of type Nim.State.t) and
returns a “guess” of the goodness or badness of that state.

Jacob Neumann Games II 18 June 2020 12 / 41



Estimators : Some design principles

An estimator for a game G is a function assigning “guesses” to each
state to (perhaps roughly) indicate who’s winning.

The “guesses” will usually be numerical (e.g. ints): lower
numbers better for Minnie, larger numbers better for Maxie. The
scale is arbitrary: all that matters is the relative ordering of states.

The goal here is to induce an ordering on states, i.e. articulate a
sense in which states are “better” or “worse” than each other (from
one player’s perspective).

We want “better” to mean “more likely to win” (as best as possible)

A given GAME will have many possible estimators, with varying
degrees of sophistication, and which may weight different factors
differently. When we make PLAYERs who use these estimators to
calculate their next_move , these differences will correspond to
different playing styles or strategies.

Jacob Neumann Games II 18 June 2020 13 / 41



ESTIMATOR.sig

22.9

1 signature ESTIMATOR =

2 sig

3 structure Game : GAME

4

5 type guess

6 datatype est = Definitely of Game.Outcome.t

7 | Guess of guess

8

9 val compare : est * est -> order

10 val toString : guess -> string

11

12 val estimate : Game.State.t -> guess

13 end

Jacob Neumann Games II 18 June 2020 14 / 41



Notes about estimator

Note that the only operation on values of type est is comparison
(the function compare). We don’t – in general – require guesses
to be numbers at all, we just require that they be ordered.

We transparently ascribe to this signature. While we don’t require
in general that guess is implemented as int or real , if we do
happen to implement it that way we want to have access to the
associated methods (e.g. from the basis structures Int and Real).

Jacob Neumann Games II 18 June 2020 15 / 41



Nim has a perfect estimator

Player p can guarantee a win from (s,flip p)

iff
s mod 4 ∼= 1

(remember
fun flip Maxie = Minnie | flip Minnie = Maxie)

5 4 3 2 1

Jacob Neumann Games II 18 June 2020 16 / 41



Nim has a perfect estimator

Player p can guarantee a win from (s,flip p)

iff
s mod 4 ∼= 1

(remember
fun flip Maxie = Minnie | flip Minnie = Maxie)

5 4 3 2 1

Jacob Neumann Games II 18 June 2020 16 / 41



Nim has a perfect estimator

Player p can guarantee a win from (s,flip p)

iff
s mod 4 ∼= 1

(remember
fun flip Maxie = Minnie | flip Minnie = Maxie)

5 4 3 2 1

Jacob Neumann Games II 18 June 2020 16 / 41



Nim has a perfect estimator

Player p can guarantee a win from (s,flip p)

iff
s mod 4 ∼= 1

(remember
fun flip Maxie = Minnie | flip Minnie = Maxie)

5 4 3 2 1

Jacob Neumann Games II 18 June 2020 16 / 41



Nim has a perfect estimator

So, assuming the other player plays optimally, whoever’s turn it is when
s is of the form (4*k)+1 for some k:int will lose.

(* recall a value of Nim.State.t is (s,p)

for some nonnegative int s and either

p=Minnie or p=Maxie *)

(* estimate : Nim.State.t -> int *)

fun estimate (s,p) =

case (s mod 4, p) of

(1,Minnie) => 1

| (1,Maxie) => ∼1
| (_,Minnie) => ∼1
| (_,Maxie) => 1

Jacob Neumann Games II 18 June 2020 17 / 41



This is somewhat too clean of an example: most games don’t have
perfect estimators. Rather, the best we can do is make pretty good
guesses! To design an estimator, we’ll usually use some combination of
simple heuristics and more sophisticated theory.
For instance, here’s a common heuristic for chess: for a chess piece p,
let v(p) be given by the following chart

Then put

estimate(S) =

 ∑
Pieces p Maxie
has in play (in S)

v(p)

−
 ∑

Pieces p Minnie
has in play (in S)

v(p)


Jacob Neumann Games II 18 June 2020 18 / 41



Section 2

The MiniMax Algorithm

Jacob Neumann Games II 18 June 2020 19 / 41



Takeaways

We should assign each node an estimator guess, its “value”.

The value of a node should reflect who’s winning from that node,
which depends on the moves available from that state.

Should assume players play optimally.

Jacob Neumann Games II 18 June 2020 20 / 41



Minnie Search

0 7 2 6

Jacob Neumann Games II 18 June 2020 21 / 41



Minnie Search

0 7 2 60 7 2 6

Jacob Neumann Games II 18 June 2020 21 / 41



Minnie Search

0 7 2 60 7 2 6

Jacob Neumann Games II 18 June 2020 21 / 41



Minnie Search

0 7 2 60 7 2 6

0

Jacob Neumann Games II 18 June 2020 21 / 41



Maxie Search

0 7 2 60 7 2 6

7

Jacob Neumann Games II 18 June 2020 22 / 41



The MiniMax Algorithm

Fix a search depth d.

1 Traverse the game tree down to the d-th level.1

2 Call the estimator to assign values to the d-th level.

3 Work upwards, assigning values to nodes according to the Minnie
and Maxie principles described above

For Minnie nodes: the value should be the minimum of the values of
the child nodes
For Maxie nodes: the value should be maximum of the values of the
child nodes.

Once we’ve filled all the way to the top of the tree (our current state),
then we can decide which move to make based on the estimated values.

1For every node encountered where the game is over, assign such nodes the value
Definitely of whoever the winner is.

Jacob Neumann Games II 18 June 2020 23 / 41



MiniMax

3 -7 9 6 1 11

Jacob Neumann Games II 18 June 2020 24 / 41



MiniMax

3 -7 9 6 1 113

Jacob Neumann Games II 18 June 2020 24 / 41



MiniMax

3 -7 9 6 1 113 -7

Jacob Neumann Games II 18 June 2020 24 / 41



MiniMax

3 -7 9 6 1 113 -7

-7

Jacob Neumann Games II 18 June 2020 24 / 41



MiniMax

3 -7 9 6 1 113 -7 9

-7

Jacob Neumann Games II 18 June 2020 24 / 41



MiniMax

3 -7 9 6 1 113 -7 9 6

-7

Jacob Neumann Games II 18 June 2020 24 / 41



MiniMax

3 -7 9 6 1 113 -7 9 6

-7 6

Jacob Neumann Games II 18 June 2020 24 / 41



MiniMax

3 -7 9 6 1 113 -7 9 6 1

-7 6

Jacob Neumann Games II 18 June 2020 24 / 41



MiniMax

3 -7 9 6 1 113 -7 9 6 1 11

-7 6

Jacob Neumann Games II 18 June 2020 24 / 41



MiniMax

3 -7 9 6 1 113 -7 9 6 1 11

-7 6 1

Jacob Neumann Games II 18 June 2020 24 / 41



MiniMax

3 -7 9 6 1 113 -7 9 6 1 11

-7 6 1

6

Jacob Neumann Games II 18 June 2020 24 / 41



MiniMax

3 -7 9 6 1 113 -7 9 6 1 11

-7 6 1

6

Jacob Neumann Games II 18 June 2020 24 / 41



22.10

1 signature SETTINGS =

2 sig

3 structure Est : ESTIMATOR

4

5 val search_depth : int

6 end

22.11

1 functor MiniMax (Settings : SETTINGS):>PLAYER

2 where Game = Settings.Est.Game =

3 struct

4 structure Est = Settings.Est

5 structure Game = Est.Game

Jacob Neumann Games II 18 June 2020 25 / 41



22.12

1 type edge = Game.Move.t * Est.est

2 fun valueOf ((_,value) : edge) = value

3 fun moveOf ((move ,_) : edge) = move

4

5 fun max ((m1 ,v1) : edge , (m2 ,v2) : edge) :

edge =

6 case Est.compare (v1 , v2) of

7 LESS => (m2 , v2)

8 | _ => (m1, v1)

9

10 fun min ((m1 ,v1) : edge , (m2 ,v2) : edge) :

edge =

11 case Est.compare (v1 , v2) of

12 GREATER => (m2 , v2)

13 | _ => (m1, v1)

Jacob Neumann Games II 18 June 2020 26 / 41



reduce1 : (’a * ’a -> ’a) -> ’a Seq.seq -> ’a

REQUIRES: g is total and associative, S is nonempty
ENSURES:
reduce1 g 〈x1 ,...,xn〉 ∼= g(x1 ,g(x2,g(...,, xn)))

22.13

1 (* choose:Player.t -> edge Seq.seq -> edge *)

2 fun choose Player.Maxie = Seq.reduce1 max

3 | choose Player.Minnie = Seq.reduce1 min

Jacob Neumann Games II 18 June 2020 27 / 41



Jacob Neumann Games II 18 June 2020 28 / 41



22.14

1 (* search : int -> G.State.t -> edge *)

2 (* REQUIRES: d > 0 *)

3 fun search (d : int) (s : Game.State.t):edge =

4 choose

5 (Game.player s)

6 (Seq.map

7 (fn m => (m, evaluate

8 (d - 1)

9 (Game.play (s,m))))

10 (Game.moves s)

11 )

Jacob Neumann Games II 18 June 2020 29 / 41



22.15

1 (* evaluate : int -> Game.status -> Est.est *)

2 (* REQUIRES: d >= 0 *)

3 and evaluate (d : int) (st : Game.status) :

Est.est =

4 case st of

5 Game.Playing s => (

6 case d of

7 0 => Est.Guess (Est.estimate s)

8 | _ => valueOf (search d s)

9 )

10 | Game.Done oc => Est.Definitely oc

22.16

1 val next_move =

2 moveOf o search Settings.search_depth

Jacob Neumann Games II 18 June 2020 30 / 41



Lecture 22.5 (to be released tonight)

Advantages and disadvantages of MiniMax

Saving some work: Alpha-Beta Pruning

Jacob Neumann Games II 18 June 2020 31 / 41



Thank you!

Jacob Neumann Games II 18 June 2020 32 / 41



Lecture 22.5
Principles of Functional Programming

Summer 2020

Games 2 1⁄2

Alpha-Beta Pruning



Minimax

0 7 2 60 7 2 6

0

0 7 2 60 7 2 6

7

Jacob Neumann Games II 18 June 2020 34 / 41



Pros and Cons

Advantages of Minimax:

Correctly determines optimal play

Massively parallelizable

Disadvantages of Minimax:

Huge amount of work

Indeed, often performs unnecessary computation

Jacob Neumann Games II 18 June 2020 35 / 41



Section 3

Alpha-Beta Pruning

Jacob Neumann Games II 18 June 2020 36 / 41



Jacob Neumann Games II 18 June 2020 37 / 41



7

Jacob Neumann Games II 18 June 2020 37 / 41



7 6

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3

7

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9

7

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1

7

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6

7

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6

7 9

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2

7 9

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4

7 9

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4 1

7 9

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4 1

7 9 4

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4 1

7 9 4

4

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4 1 1

7 9 4

4

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4 1 1 2

7 9 4

4

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4 1 1 2 3

7 9 4

4

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4 1 1 2 3

7 9 4 3

4

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4 1 1 2 3 9

7 9 4 3

4

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4 1 1 2 3 9 7

7 9 4 3

4

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4 1 1 2 3 9 7 2

7 9 4 3

4

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4 1 1 2 3 9 7 2

7 9 4 3 9

4

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4 1 1 2 3 9 7 2 9

7 9 4 3 9

4

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4 1 1 2 3 9 7 2 9 1

7 9 4 3 9

4

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4 1 1 2 3 9 7 2 9 1 0

7 9 4 3 9

4

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4 1 1 2 3 9 7 2 9 1 0

7 9 4 3 9 9

4

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4 1 1 2 3 9 7 2 9 1 0

7 9 4 3 9 9

4 3

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 1 6 2 4 1 1 2 3 9 7 2 9 1 0

7 9 4 3 9 9

4 3

4

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 2 4 1 1 2 3

7 9 4 3

4 3

4

Jacob Neumann Games II 18 June 2020 37 / 41



7 6 3 9 2 4 1 1 2 3

7 9 4 3

4 3

4

Jacob Neumann Games II 18 June 2020 37 / 41



Idea

As we perform MiniMax, we want to keep track of “what can be
guaranteed” to inform us when we’re exploring an irrelevant subtree.

Jacob Neumann Games II 18 June 2020 38 / 41



Idea

So, for every point along the minimax algorithm, there is some estimator
guess value α, which represents the greatest value that Maxie can
guarantee. Analogously, we’ll keep track of some value β representing
the least value that Minnie can guarantee. It must be the case that
α ≤ β.

When Minnie encounters a node whose value is ≤ α, then she can
“prune” the rest of the current subtree: Maxie won’t let the game get
to this point. If Maxie encounters a node whose value is ≥ β, then she
prunes.

Jacob Neumann Games II 18 June 2020 39 / 41



Handy Chart

Jacob Neumann Games II 18 June 2020 40 / 41



(Alphabeta example)

Jacob Neumann Games II 18 June 2020 41 / 41


	How to Build Smart PLAYERs
	The MiniMax Algorithm
	Alpha-Beta Pruning

