
Lecture 13
Principles of Functional Programming

Summer 2020

Case Study: Continuation
Semantics
Fake imperative programming using
CPS, dictionaries, and datatypes



Acknowledgements

In this lecture, I use a lot of code and ideas developed by others.

Red/Black Trees for dictionaries: code by Mike Erdmann and Frank
Pfenning

We’ll discuss the details of this next week!

Monadic Parser Combinators: core parser code by Matthew
McQuaid, for the course 98-317 (spring 2020)

Continuation Semantics for while programs: I based my code off of
notes and lectures by Steve Brookes for the course 15-314/812
(spring 2020)

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 2 / 30



The FC language

(code demo)

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 3 / 30



How?

It takes a couple steps to do this.

1 Represent the FC code in a syntax SML can understand

2 Design a mechanism for how to mimic mutable state in SML

3 Write (CPS!) functions which “run” the SML representation of the
FC code

The first step is more involved (and sophisticated) than we can get into
here, so we’ll mainly focus on the latter two steps.

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 4 / 30



Files

The files in red are library code, which you don’t need to worry about.

cExp.sml – the SML syntax of FC

FC.sml – the core logic

*.fc – example files (written in FC)

Makefile – allows you to run make repl to start an smlnj repl
with everything needed to run .fc files

lib

parse.sml – code for parsing FC to its SML representation
Dictionary.sml – code for dictionaries
sources.cm – info for SMLNJ to let it know what files to load

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 5 / 30



Syntax for running code

In your terminal shell:

make repl

Standard ML of New Jersey v110 ...

...

[New bindings added .]

- FC.Runfile "filename.fc";

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 6 / 30



Section 1

Representing FC programs in SML

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 7 / 30



The three expression types

We represent FC programs using three datatypes:

cExp : represents commands. The program as a whole is
represented by a value of type cExp . These are built up from some
basic commands via various operations.

iExp : represents integer expressions, which could be a variable
name, an integer constant, or various arithmetic combinations of
other integer expressions.

bExp : represents boolean expressions, which could be a variable
name, a boolean constant, boolean operations on other boolean
expressions, or comparisons between integer expressions.

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 8 / 30



iExps

13.0

1 datatype iExp = iVAR of string

2 | CONST of int

3 | PLUS of iExp * iExp

4 | TIMES of iExp * iExp

5 | NEG of iExp

6 | DIV of iExp * iExp

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 9 / 30



bExps

13.1

1 datatype bExp = bVAR of string

2 | TRUE

3 | FALSE

4 | EQ of iExp * iExp

5 | LT of iExp * iExp

6 | GT of iExp * iExp

7 | AND of bExp * bExp

8 | NOT of bExp

9 | OR of bExp * bExp

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 10 / 30



cExps

13.2

1 datatype cExp = SKIP

2 | ASSIGNB of string * bExp

3 | ASSIGNI of string * iExp

4 | THEN of cExp * cExp

5 | IFTHENELSE of bExp* cExp *cExp

6 | WHILE of bExp * cExp

7 | RETURN of iExp

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 11 / 30



Parsing

We’ve written some code which

1 Reads the .fc file

2 Builds a single value of type cExp representing the code

(* Accepts a string of FC code and parses it *)

val fcParser.parse

: string ->(cExp -> ’a) -> (unit -> ’a) ->’a

(* Accepts a filename and reads FC code in it*)

val fcParser.fileParse

: string ->(cExp -> ’a) -> (unit -> ’a) ->’a

val fcParser.showParse : string -> cExp

Note: The parser is currently somewhat buggy. I’m working on
improving it.
Note: Parsing is a really interesting topic. Learn more about it if you get
the chance!

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 12 / 30



Steps

X Represent the FC code in a syntax SML can understand

2 Design a mechanism for how to mimic mutable state in SML

3 Write (CPS!) functions which “run” the SML representation of the
FC code

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 13 / 30



Section 2

Dictionaries

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 14 / 30



Dictionaries

A dictionary is a data structure which stores key-value pairs (k,v),
which can be looked up (i.e. you supply a string k, and the dictionary
tells you the corresponding value v, if there is one).We implement
dictionaries to have the following methods.

Dict.empty

: ’a Dict.dict

Dict.lookup

: ’a Dict.dict -> string -> ’a option

Dict.insert

: ’a Dict.dict -> (string * ’a)

-> ’a Dict.dict

We won’t concern ourselves with the implementation details today – we
leave that for another time! Just assume these dictionaries work as
intended.

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 15 / 30



Using dictionaries to mimic mutable state

We want to simulate a “mutable state”, where variables are set to certain
values and can be modified later. We also want to be able to allocate
arbitrarily-named variables to have either boolean or integer values.
We can do this by passing a dictionary D : t Dict.dict around:

All our functions will take in a dictionary as an argument,
representing the “current state”

Set a variable x to v : t by putting

val D’ = Dict.insert D ("x",v)

and then using D’ as the state from then on (e.g. passing to other
functions)

Query the current value of x by putting

val xVal = Dict.lookup D "x"

If xVal is SOME v then x is currently set to v. If xVal is NONE ,
then x is currently unbound.

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 16 / 30



How we’ll keep track of variables

13.3

1 datatype entry = BOOL of bool | INT of int

So an entry Dict.dict stores booleans and integers, tagged with
their types.

If Dict.lookup D "x" is SOME(BOOL b), then x is set a
boolean-valued variable, whose value is currently b.

If Dict.lookup D "x" is SOME(INT n), then x is an
integer-valued variable whose current value is n.

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 17 / 30



Steps

X Represent the FC code in a syntax SML can understand

X Design a mechanism for how to mimic mutable state in SML

3 Write (CPS!) functions which “run” the SML representation of the
FC code

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 18 / 30



Section 3

Execution

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 19 / 30



A system of errors

13.4

1 datatype Type = Bool | Int

2 datatype error =

3 TypeError of string * Type * Type

4 | UnboundVar of string

5 | DivZero

6 | NoReturn

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 20 / 30



interpret

interpret : cExp -> (error -> ’a) -> (int ->

’a) -> ’a

REQUIRES: true
ENSURES: interpret input panic success evaluates to
success(n) if executing the command input returns n. If
executing input encounters an error e, then
interpret input panic success evaluates to panic e.

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 21 / 30



How to interpret

fun interpret input panic success =

let

fun evalB (D:entry Dict.dict) (b:bExp)

(k:bool -> ’a) : ’a = ...

fun evalI (D:entry Dict.dict) (e:iExp)

(k:int -> ’a) : ’a = ...

fun exec (D:entry Dict.dict) (c:cExp)

(k:entry Dict.dict -> ’a):’a

= ...

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 22 / 30



evalI is CPS to the core!

13.5

1 fun evalI (D : entry Dict.dict)

2 (e : iExp) (k:int -> ’a) =

3 case e of

4 (CONST n) => k n

5 | (PLUS(e1 ,e2)) =>

6 evalI D e1 (fn v1 =>

7 evalI D e2 (fn v2 =>

8 k(v1+v2)))

9 | (TIMES(e1 ,e2)) =>

10 evalI D e1 (fn v1 =>

11 evalI D e2 (fn v2 =>

12 k(v1*v2)))

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 23 / 30



evalI is CPS to the core!

13.6

1 | (NEG(e’)) =>

2 evalI D e’ (fn v => k(∼v))
3 | (DIV(e1 ,e2)) =>

4 evalI D e2 (fn 0 => panic DivZero

5 | v2 => evalI D e1 (fn v1=>

6 k(v1 div v2)))

7 | (iVAR i) =>

8 (case (Dict.lookup D i) of

9 (SOME(INT v)) => k v

10 | (SOME _) =>

11 panic (TypeError (i,Int ,Bool))

12 | NONE =>

13 panic (UnboundVar i))

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 24 / 30



and so is evalB!

13.7

1 fun evalB (D:entry Dict.dict)

2 (b:bExp) (k:bool ->’a) =

3 case b of

4 TRUE => k true

5 | FALSE => k false

6 | (EQ(e1 ,e2)) =>

7 evalI D e1 (fn v1 =>

8 evalI D e2 (fn v2 =>

9 k(v1=v2)))

10 | (LT(e1 ,e2)) =>

11 evalI D e1 (fn v1 =>

12 evalI D e2 (fn v2 =>

13 k(v1<v2)))

14 | (GT(e1 ,e2)) =>

15 evalI D e1 (fn v1 =>

16 evalI D e2 (fn v2 =>

17 k(v1>v2)))

18 | (AND(b1 ,b2)) =>

19 evalB D b1 (fn v1 =>

20 evalB D b2 (fn v2 =>

21 k(v1 andalso v2)))

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 25 / 30



and so is evalB!

13.8

1 | (OR(b1 ,b2)) =>

2 evalB D b1 (fn v1 =>

3 evalB D b2 (fn v2 =>

4 k(v1 orelse v2)))

5 | (NOT(b’)) =>

6 evalB D b’ (fn v => k (not v))

7 | (bVAR(i)) =>

8 (case (Dict.lookup D i) of

9 (SOME(BOOL v)) => k v

10 | (SOME(INT _)) =>

11 panic (TypeError(i,Bool ,Int))

12 | NONE =>

13 panic (UnboundVar i))

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 26 / 30



and finally exec

13.9

1 fun exec (D : entry Dict.dict) (c : cExp)

2 (k : entry Dict.dict -> ’a) : ’a =

3 case c of

4 SKIP => k D

5 | (ASSIGNB(s,b)) =>

6 evalB D b (fn vb =>

7 k (Dict.insert(D,(s,BOOL vb))))

8 | (ASSIGNI(i,e)) =>

9 evalI D e (fn v =>

10 k (Dict.insert(D,(i,INT v))))

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 27 / 30



and finally exec

13.10

1 | (THEN(c1 ,c2)) =>

2 exec D c1 (fn D’ =>

3 exec D’ c2 k)

4 | (IFTHENELSE(b,c1 ,c2)) =>

5 evalB D b

6 (fn true => exec D c1 k

7 | false => exec D c2 k)

8 | (WHILE(b,c’)) =>

9 evalB D b

10 (fn true => exec D c’ (fn D’ =>

11 exec D’ c k)

12 | false => k D)

13 | (RETURN e) => evalI D e success

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 28 / 30



How to interpret

fun interpret input panic success =

let

fun evalB (D:entry Dict.dict) (b:bExp)

(k:bool -> ’a) : ’a = ...

fun evalI (D:entry Dict.dict) (e:iExp)

(k:int -> ’a) : ’a = ...

fun exec (D:entry Dict.dict) (c:cExp)

(k:entry Dict.dict -> ’a):’a

= ...

(* calls success to return *)

in

exec (Dict.empty) input

(fn _ => panic NoReturn)

end

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 29 / 30



Thank you!

Jacob Neumann Case Study: Continuation Semantics 05 June 2020 30 / 30


	Representing FC programs in SML
	Dictionaries
	Execution

