
Lecture 13
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Case Study: Continuation
Semantics
Fake imperative programming using
CPS, dictionaries, and datatypes
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The FC language

(code demo)
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How?

It takes a couple steps to do this.

1 Represent the FC code in a syntax SML can understand

2 Design a mechanism for how to mimic mutable state in SML

3 Write (CPS!) functions which “run” the SML representation of the
FC code

The first step is more involved (and sophisticated) than we can get into
here, so we’ll mainly focus on the latter two steps.
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Files

The files in red are library code, which you don’t need to worry about.

cExp.sml – the SML syntax of FC

FC.sml – the core logic

*.fc – example files (written in FC)

Makefile – allows you to run make repl to start an smlnj repl
with everything needed to run .fc files

lib

parse.sml – code for parsing FC to its SML representation
Dictionary.sml – code for dictionaries
sources.cm – info for SMLNJ to let it know what files to load
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Syntax for running code

In your terminal shell:

make repl

Standard ML of New Jersey v110 ...

...

[New bindings added .]

- FC.Runfile "filename.fc";
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Section 1

Representing FC programs in SML
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The three expression types

We represent FC programs using three datatypes:

cExp : represents commands. The program as a whole is
represented by a value of type cExp . These are built up from some
basic commands via various operations.

iExp : represents integer expressions, which could be a variable
name, an integer constant, or various arithmetic combinations of
other integer expressions.

bExp : represents boolean expressions, which could be a variable
name, a boolean constant, boolean operations on other boolean
expressions, or comparisons between integer expressions.
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iExps

13.0

1 datatype iExp = iVAR of string

2 | CONST of int

3 | PLUS of iExp * iExp

4 | TIMES of iExp * iExp

5 | NEG of iExp

6 | DIV of iExp * iExp
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bExps

13.1

1 datatype bExp = bVAR of string

2 | TRUE

3 | FALSE

4 | EQ of iExp * iExp

5 | LT of iExp * iExp

6 | GT of iExp * iExp

7 | AND of bExp * bExp

8 | NOT of bExp

9 | OR of bExp * bExp
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cExps

13.2

1 datatype cExp = SKIP

2 | ASSIGNB of string * bExp

3 | ASSIGNI of string * iExp

4 | THEN of cExp * cExp

5 | IFTHENELSE of bExp* cExp *cExp

6 | WHILE of bExp * cExp

7 | RETURN of iExp
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Parsing

We’ve written some code which

1 Reads the .fc file

2 Builds a single value of type cExp representing the code

(* Accepts a string of FC code and parses it *)

val fcParser.parse

: string ->(cExp -> ’a) -> (unit -> ’a) ->’a

(* Accepts a filename and reads FC code in it*)

val fcParser.fileParse

: string ->(cExp -> ’a) -> (unit -> ’a) ->’a

val fcParser.showParse : string -> cExp

Note: The parser is currently somewhat buggy. I’m working on
improving it.
Note: Parsing is a really interesting topic. Learn more about it if you get
the chance!
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Steps

X Represent the FC code in a syntax SML can understand

2 Design a mechanism for how to mimic mutable state in SML

3 Write (CPS!) functions which “run” the SML representation of the
FC code
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Section 2

Dictionaries
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Dictionaries

A dictionary is a data structure which stores key-value pairs (k,v),
which can be looked up (i.e. you supply a string k, and the dictionary
tells you the corresponding value v, if there is one).We implement
dictionaries to have the following methods.

Dict.empty

: ’a Dict.dict

Dict.lookup

: ’a Dict.dict -> string -> ’a option

Dict.insert

: ’a Dict.dict -> (string * ’a)

-> ’a Dict.dict

We won’t concern ourselves with the implementation details today – we
leave that for another time! Just assume these dictionaries work as
intended.
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Using dictionaries to mimic mutable state

We want to simulate a “mutable state”, where variables are set to certain
values and can be modified later. We also want to be able to allocate
arbitrarily-named variables to have either boolean or integer values.
We can do this by passing a dictionary D : t Dict.dict around:

All our functions will take in a dictionary as an argument,
representing the “current state”

Set a variable x to v : t by putting

val D’ = Dict.insert D ("x",v)

and then using D’ as the state from then on (e.g. passing to other
functions)

Query the current value of x by putting

val xVal = Dict.lookup D "x"

If xVal is SOME v then x is currently set to v. If xVal is NONE ,
then x is currently unbound.
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How we’ll keep track of variables

13.3

1 datatype entry = BOOL of bool | INT of int

So an entry Dict.dict stores booleans and integers, tagged with
their types.

If Dict.lookup D "x" is SOME(BOOL b), then x is set a
boolean-valued variable, whose value is currently b.

If Dict.lookup D "x" is SOME(INT n), then x is an
integer-valued variable whose current value is n.
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Steps

X Represent the FC code in a syntax SML can understand

X Design a mechanism for how to mimic mutable state in SML

3 Write (CPS!) functions which “run” the SML representation of the
FC code
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Section 3

Execution
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A system of errors

13.4

1 datatype Type = Bool | Int

2 datatype error =

3 TypeError of string * Type * Type

4 | UnboundVar of string

5 | DivZero

6 | NoReturn
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interpret

interpret : cExp -> (error -> ’a) -> (int ->

’a) -> ’a

REQUIRES: true
ENSURES: interpret input panic success evaluates to
success(n) if executing the command input returns n. If
executing input encounters an error e, then
interpret input panic success evaluates to panic e.
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How to interpret

fun interpret input panic success =

let

fun evalB (D:entry Dict.dict) (b:bExp)

(k:bool -> ’a) : ’a = ...

fun evalI (D:entry Dict.dict) (e:iExp)

(k:int -> ’a) : ’a = ...

fun exec (D:entry Dict.dict) (c:cExp)

(k:entry Dict.dict -> ’a):’a

= ...
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evalI is CPS to the core!

13.5

1 fun evalI (D : entry Dict.dict)

2 (e : iExp) (k:int -> ’a) =

3 case e of

4 (CONST n) => k n

5 | (PLUS(e1 ,e2)) =>

6 evalI D e1 (fn v1 =>

7 evalI D e2 (fn v2 =>

8 k(v1+v2)))

9 | (TIMES(e1 ,e2)) =>

10 evalI D e1 (fn v1 =>

11 evalI D e2 (fn v2 =>

12 k(v1*v2)))
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evalI is CPS to the core!

13.6

1 | (NEG(e’)) =>

2 evalI D e’ (fn v => k(∼v))
3 | (DIV(e1 ,e2)) =>

4 evalI D e2 (fn 0 => panic DivZero

5 | v2 => evalI D e1 (fn v1=>

6 k(v1 div v2)))

7 | (iVAR i) =>

8 (case (Dict.lookup D i) of

9 (SOME(INT v)) => k v

10 | (SOME _) =>

11 panic (TypeError (i,Int ,Bool))

12 | NONE =>

13 panic (UnboundVar i))
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and so is evalB!

13.7

1 fun evalB (D:entry Dict.dict)

2 (b:bExp) (k:bool ->’a) =

3 case b of

4 TRUE => k true

5 | FALSE => k false

6 | (EQ(e1 ,e2)) =>

7 evalI D e1 (fn v1 =>

8 evalI D e2 (fn v2 =>

9 k(v1=v2)))

10 | (LT(e1 ,e2)) =>

11 evalI D e1 (fn v1 =>

12 evalI D e2 (fn v2 =>

13 k(v1<v2)))

14 | (GT(e1 ,e2)) =>

15 evalI D e1 (fn v1 =>

16 evalI D e2 (fn v2 =>

17 k(v1>v2)))

18 | (AND(b1 ,b2)) =>

19 evalB D b1 (fn v1 =>

20 evalB D b2 (fn v2 =>

21 k(v1 andalso v2)))
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and so is evalB!

13.8

1 | (OR(b1 ,b2)) =>

2 evalB D b1 (fn v1 =>

3 evalB D b2 (fn v2 =>

4 k(v1 orelse v2)))

5 | (NOT(b’)) =>

6 evalB D b’ (fn v => k (not v))

7 | (bVAR(i)) =>

8 (case (Dict.lookup D i) of

9 (SOME(BOOL v)) => k v

10 | (SOME(INT _)) =>

11 panic (TypeError(i,Bool ,Int))

12 | NONE =>

13 panic (UnboundVar i))
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and finally exec

13.9

1 fun exec (D : entry Dict.dict) (c : cExp)

2 (k : entry Dict.dict -> ’a) : ’a =

3 case c of

4 SKIP => k D

5 | (ASSIGNB(s,b)) =>

6 evalB D b (fn vb =>

7 k (Dict.insert(D,(s,BOOL vb))))

8 | (ASSIGNI(i,e)) =>

9 evalI D e (fn v =>

10 k (Dict.insert(D,(i,INT v))))
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and finally exec

13.10

1 | (THEN(c1 ,c2)) =>

2 exec D c1 (fn D’ =>

3 exec D’ c2 k)

4 | (IFTHENELSE(b,c1 ,c2)) =>

5 evalB D b

6 (fn true => exec D c1 k

7 | false => exec D c2 k)

8 | (WHILE(b,c’)) =>

9 evalB D b

10 (fn true => exec D c’ (fn D’ =>

11 exec D’ c k)

12 | false => k D)

13 | (RETURN e) => evalI D e success
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How to interpret

fun interpret input panic success =

let

fun evalB (D:entry Dict.dict) (b:bExp)

(k:bool -> ’a) : ’a = ...

fun evalI (D:entry Dict.dict) (e:iExp)

(k:int -> ’a) : ’a = ...

fun exec (D:entry Dict.dict) (c:cExp)

(k:entry Dict.dict -> ’a):’a

= ...

(* calls success to return *)

in

exec (Dict.empty) input

(fn _ => panic NoReturn)

end
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Thank you!
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