

Propositions-as-Types & Dependent Types

15-150 M21

Lecture 0811 11 August 2021

Formal logic is the study of *propositions*, which are formal statements that can be either true or false.

$$\varphi ::= \mathbf{p} \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \rightarrow \psi \mid \varphi \lor \psi$$

In formal logic, we formalize the reasoning of mathematics by formally *proving* propositions.

We do so by combining *axioms* to form deductions. The axioms are "tautological" (obviously true) statements of logic, e.g.

- $\varphi \to \varphi$
- $\varphi \to \psi \to \varphi$
- $(\varphi \to \psi) \to (\psi \to \theta) \to \varphi \to \theta$
- If φ and $\varphi \rightarrow \psi,$ then ψ

What does this look like?

Observation: Tautologies of Formal Logic look like HOF types!

Idea: we'll associate *propositions* (statements that can be true or false) with *types*: a proposition P is the type of proofs that P is true.

- A proposition *P* is "true" if it is **inhabited**: there exists some *w* : *P witnessing the truth of P*.
- An uninhabited type is a "false" proposition: there is no witness/proof of its truth

Purpose:

Use the tools of type theory/functional programming to reason about formal logic
Utilize logic inside of functional programming

- Can take the conjunction P₁ \lapha P₂ of two propositions to get another one: P₁
 and P₂. A witness of P₁ \lapha P₂ consists of a witness to the truth of P₁ and a witness of the truth of P₂.
 - (w1, w2) witnesses the truth of $P_1 \wedge P_2$ iff w_1 witnesses the truth of P_1 and w_2 witnesses the truth of P_2

So conjunction is represented by *product types*

- Can take the disjunction P₁ ∨ P₂ of two propositions to get another one: P₁
 or P₂. A witness of P₁ ∨ P₂ consists of either a witness to the truth of P₁ or a witness of the truth of P₂.
 - w witnesses the truth of $P_1 \vee P_2$ iff w witnesses the truth of P_1 or w witnesses the truth of P_2

So conjunction is represented by *sum types*:

datatype ('a,'b) plus = inL of 'a | inR of 'b

The proposition P₁ → P₂ represents implication: P₁ implies P₂. A witness of P₁ → P₂ is a way of obtaining a witness w': P₂, given a witness w : P₁.
 f witnesses the truth of P₁ → P₂ iff for all witnesses w of P₁, there's a witness f(w) of P₂

So implication is represented by *function types*

• $P \rightarrow P$

<u>fn</u> p => p

• $P \rightarrow (Q \rightarrow P)$

 $fn p \Rightarrow fn q \Rightarrow q$

• $P \land Q \rightarrow P$

 $fn (p,q) \Rightarrow p$

 The proposition ¬P represents negation: ¬P means "not P". A witness of ¬P is a proof by contradiction of P: a witness that, if P were true, then absurdity would follow.

 $\neg T$ is defined to be T -> void

where void is the type with no elements:

datatype void = Void of void (* No base case
*)

• $(P \rightarrow Q) \rightarrow \neg Q \rightarrow \neg P$ fn g => fn nq => nq o g • $P \rightarrow \neg \neg P$ $P \rightarrow (P \rightarrow \bot) \rightarrow \bot$ fn p => fn np => np(p)

Idea: Type Families

T -> Type

In SML,

(op >=) : int * int -> bool

where $(m \ge n)$ is true if m is greater-than-or-equal-to n, and false otherwise.

What if instead we did

(op Geq) : int * int -> Type where (m Geq n) is inhabited if m is greater-than-or-equal-to n, and uninhabited otherwise?

infix Geq (* (op Geq) : int * int -> Type *) fun m Geq 0 = unit0 Geq n = voidm Geq n =let datatype result = GeqSucc of (m-1) Geq (n-1)in result end

GeqSucc(GeqSucc())) : 8 Geq 3

	isNonEmpty	(x::xs) = u	ınit
fun	hd (L : 'a	<pre>list) (p :</pre>	isNonEmpty L) =
	let val x::	$_{-}$ = L in x	end

In order to call this, you would need to supply not just L but p. This would be impossible if L = [], since there are no values p : isNonEmpty [].

16 Propositions-as-Types

Dependent Types

Notice something funny about the type of this function:

fun hd (L : 'a list) (p : isNonEmpty L) =

The type of the second argument *depends* on the value of the first. How do we make sense of this?

Given a type family $B : A \rightarrow Type$, the **dependent product** type, written (a : A) $\rightarrow B(a)$ or $\prod_{a:A} B(a)$ is the type of functions f, where, for each a : A, f(a) : B(a). The proposition ∀xP(x) is universal quantification. A witness of ∀xP(x) is a way to take an arbitrary x and produce a witness of P(x).

$$(x : T) \rightarrow P(x)$$

• $\forall x (P(x) \rightarrow Q(x)) \rightarrow \forall x P(x) \rightarrow \forall x Q(x)$ fn pPQ => fn pP => fn x => pPQ x (pP(x))

20 Dependent Types

Existential Quantification?

Given a type family B : A -> Type, the **dependent sum** type, written

$$(a : A, B(a))$$
 or $\sum_{a:A} B(a)$

is the type of pairs (a,b), where a: A and b: B(a).

The proposition ∃xP(x) is existential quantification. A witness of ∃xP(x) is some x and a witness of P(x).

• $\forall x(P(x) \rightarrow Q(x)) \rightarrow \exists x P(x) \rightarrow \exists x Q(x)$ fn pPQ => fn (a,pa) => (a,pPQ a pa)

23 Dependent Types

fun fact (n:int) (pn : n Geq 0)
 : (res : int, pres : res Geq 0) =
 case n of
 0 => (1,())
 | _ => mulNat
 (n,pn)
 (fact (n-1) ((*some p : n-1 Geq 0 *)))

4 Dependent Types

Thank you!