
Semester Review

A long list of things you already
know

15-150 M21

Lecture 0804
04 August 2021

0 Reasoning About Code

Reasoning About Code

• Mathematically articulate the structure of our code

• Deduce its properties

Reasoning About Code1

Evaluation

• Value:
fn () => 1 div 0

• Valuable:

let val x = 2+2 in fn () => x div 0 end

• Raises exception:
(fn () => 1 div 0) ()

• Loops forever:

let fun loop() = loop() in loop() end

Reasoning About Code2

Extensional Equivalence & Referential Transparency

Two well-typed expressions are said to be extensionally equivalent if they
have the same type and either

• They both evaluate to the same value

• They both raise the same exception

• They both loop forever

Referential Transparency: If e1 ∼= e2 (and both are pure), then any instance of
e1 can be replaced with e2 (and vice versa) without changing the overall
behavior of the code.

Reasoning About Code3

Swap out with a better implementation

fun exp 0 = 1

| exp n = 2 * exp(n-1)

fun pow 0 = 1

| pow n =

case (isEven n) of

true => square(pow (n div 2))

| false => 2* square(pow (n div 2))

Prop. For all n ≥ 0,
exp n ∼= pow n

Reasoning About Code4

Totality & the Valuable Stepping Principle

A total function is one which is guaranteed to evaluate to a value when applied
to any value of the input type

map g (f(x)::map f xs)
∼= g(f(x)) :: map g (map f xs)

(defn map, totality of f,totality of map f)

If a function f is not assumed to be total, then we need to justify this kind of
steps with lengthy reasoning about why the two sides are extensionally equivalent.
If we can avoid this, it’s nice to. We know that we can obtain extensional
equivalences by stepping through code, treating valuable expressions as values

Reasoning About Code5

Effects

• Exceptions are a kind of effect:

(fn _ => raise Fail "Unimplemented") [1,2]

This expression doesn’t evaluate to a value!

• We also have actual effects:

r := 1

Reasoning about effects makes the code more complicated!

Reasoning About Code6

Cost Semantics

Another way we reason mathematically about code: quantifying the runtime.

Wmsort(n) is O(n log n)

In addition to the sequential runtime (work), we had the parallel runtime (span)
which assumed we took advantage of every opportunity for parallelism, and had
unlimited processors.

Smsort(n) is O(log2(n))

Reasoning About Code7

Algorithmic Design

Reasoning About Code8

1 Recursion

Datatypes, Pattern Matching, and Recursion

• Recursively construct data:

datatype ’a list =

[] | :: of ’a * ’a list

datatype ’a tree =

Empty | Node of ’a tree * ’a * ’a tree

• Pattern match to recursively deconstruct:

fun foo [] = ...

| foo (x::xs) = ... foo xs ...

• Inductively establish correctness

• Solve for runtime by recurrence

Recursion9

Higher Order Functions

fun map f [] = []

| map f (x::xs) =

(f x)::map f xs

fun filter p [] = []

| filter p (x::xs) =

if (p x)

then x:: filter p xs

else filter p xs

fun foldl g z [] = z

| foldl g z (x::xs) =

foldl g (g(x,z)) xs

Recursion10

Structural Induction

IS T=Node(L,x,R) for some values L,R:tree and x:int

IH1 rev(inord L) ∼= inord(revTree L)

IH2 rev(inord R) ∼= inord(revTree R)

rev(inord (Node(L,x,R)))
∼= rev((inord L)@(x::(inord R))) (defn inord)
∼= (rev (x::inord R)) @ (rev(inord L)) (Lemma 1,2)
∼= ((rev (inord R))@[x]) @ (rev(inord L))

(Lemma 2 , defn of rev)
∼= (rev (inord R))@(x::(rev(inord L))) (Lemma 2,3,4)

Recursion11

1 Recurrence:

W (0) = k0

W (n) = k1 + k2n + W (n − 1)

2 Work Tree

3 Measurements
Height: n Work on the i -th level: k1 + k2(n − i)

4 Sum:

W (n) ≈ k0 +
n∑

i=0

(k1 + k2(n − i)) = . . .

5 Big O:
W (n) is O(n2)

Recursion12

Converting to tail-recursive form

texp : int * int -> int

REQUIRES: n ≥ 0
ENSURES: texp(n,acc) ∼= acc * 2n

fun texp (0,acc) = acc

| texp (n,acc) = texp(n-1,2*acc)

Recursion13

Functions Are Accumulators

factCPS : int -> (int -> ’a) -> ’a

REQUIRES: n ≥ 0
ENSURES: factCPS n k ∼= k(fact n)

fun factCPS 0 k = k 1

| factCPS n k =

factCPS (n-1) (fn res => k(n*res))

Recursion14

2 Data Representation

Datatypes

• Options
fun hd [] = NONE

| hd (x::_) = SOME x

• Order
case Int.compare(x,y) of

LESS => ...

| EQUAL => ...

| GREATER => ...

• Extended integers
datatype int ’ = NEGINF

| FIN of int

| POSINF
Data Representation15

Representing Regular Expressions

datatype ’’a regexp =

Const of ’’a

| One

| Zero

| Times of ’’a regexp * ’’a regexp

| Plus of ’’a regexp * ’’a regexp

| Star of ’’a regexp

match : ’’a regexp

-> ’’a list

-> (’’a list * ’’a list -> ’b)

-> ’b

Data Representation16

Data Structures

structure LLQ :> QUEUE =

struct

(* INVARIANT: if (f,b):’a queue , then the

list f@(rev b) lists the elements of the

queue in their queueing order *)

type ’a queue = (’a list * ’a list)

...

Data Representation17

3 Abstraction

Abstraction

Idea:
Make functions more general by “abstracting” away details: replace by variable

name, and take in a value for that variable as an argument.

Abstraction18

Polymorphism

fun len ([] : ’a list):int = 0

| len (x::xs) = 1+(len xs)

The ’a can be instantiated with whatever type we want!

The value fn (x,y)=>y can be used as a value of type
int * int -> int, or string*bool -> bool , and so on.

Abstraction19

Lambda Abstraction

fn f => fn x => fn y => f(x,y)

The f can be instantiated with whatever value we want (if its MGT is an
instance of ’a * ’b -> ’c)!

• Lambda abstract comparison function

fun merge cmp (L1,L2) = ...

• Lambda abstract predicate function

fun filter p L = ...

• Lambda abstract other function

fun map f L = ...

Abstraction20

Lambda Abstract Typeclasses

signature ORD =

sig

type t

val compare : t * t -> order

end

functor OrdTreeSet(Elt : ORD) : SET =

struct

...

Abstraction21

Abstract Types

We had the notion of an abstract type

Especially when opaquely ascribed, we don’t know (and often don’t care) what
type this is implemented as. We instead just work with it based on the signature
& documentation

Abstraction22

4 Suspension and Control

Lambda Suspension

Functions are values. One of the things we mean by this statement is the fact
that well-typed expressions of the form

fn x => e

are values. Therefore, e does not get evaluated until this function value is
applied(the evaluation of e is “suspended behind the lambda”).

We use suspended computations for a variety of purposes.

Suspension and Control23

CPS Control Flow

fun search p Empty sc fc = fc ()

| search p (Node(L,x,R)) sc fc =

if p x then sc x else

search p L sc (fn () => search p R sc fc)

fun search p Empty sc fc = fc ()

| search p (Node(L,x,R)) sc fc =

if p x then sc(x,[]) else

search p L

(fn (res ,dirs) => sc(res ,Left::dirs))

(fn () =>

search p R

(fn (res ,dirs) =>sc(res ,Right ::dirs))

fc

)
Suspension and Control24

Super CPS

fun iterate (check : ’a -> result)

(L : ’a list) (combine : ’a -> ’b -> ’b)

(base : ’b) (success : ’a -> ’c)

(panic : string -> ’c) (return : ’b -> ’c)

: ’c =

let

fun run ([] : ’a list) (k:’b -> ’c) : ’c =

k base

| run (x::xs) k = (case (check x) of

Accept => success x

| Keep => run xs (k o (combine x))

| Discard => run xs k

| (Break s)=> panic s)

in

run L return

end

Suspension and Control25

Exceptions

exception NotFound

fun search p Empty sc = raise NotFound

| search p (Node(L,x,R)) sc =

(if p x then sc x else

search p L sc)

handle NotFound =>

search p R sc

Suspension and Control26

Laziness

datatype ’a stream =

Stream of unit -> ’a front

and ’a front =

Nil | Cons of ’a * ’a stream

fun natsFrom k =

Stream.delay(fn () => natsFrom ’ k)

and natsFrom ’ k =

Stream.cons(k,natsFrom (k+1))

val nats = natsFrom 0

Suspension and Control27

Conclusions

• Think about code

• Do incredible things.

Suspension and Control28

Advice for studying/taking exam

• Write your own review lecture & final (try to come up with your own
examples of the phenomena we talked about)

• Ask questions in OH and on Piazza

• I’ll try to put up as much up-to-date scores as possible, but time spent
running numbers is time wasted.

• I believe that all of you learned functional programming and I want to give
you a good grade. I just need an excuse to do so...

Suspension and Control29

end

So,

• Thank you for being amazing

• Good luck on the final (you got
this!)

• Come to the optional lectures

• Relax & enjoy the rest of your
summer

Suspension and Control30

THANK YOU!

Suspension and Control31

	Reasoning About Code
	Recursion
	Data Representation
	Abstraction
	Suspension and Control

