
Imperative
Programming

Having an effect

15-150 M21

Lecture 0802
02 August 2021



0 Effects in SML



Throwback

Effect: A change to the state of the computer or the world

Effects in SML1



Value: A piece of data which is “fully calculated” or “fully simplified” – the kind
of thing that can serve as an answer to a computational question (need to specify

what this means)

Effects in SML2



Purity

Recall we had the notion of purity:

• An expression is pure if evaluating it causes no side-effects

• A function is pure if applications of it never cause side-effects

• A language is pure if it doesn’t have any kind of effects

So far, we’ve been working with just the pure fragment of SML. But SML is not
completely pure. . .

Effects in SML3



Demonstration:
print



print : string -> unit

We’re generally not interested in pure unit-returning functions: for each type
t, there’s only one pure, total function of type t -> unit .

Usually, functions which return a unit are impure: we’re executing them for
their effect.

Effects in SML5



Demonstration:
before, ignore, and ;



1 Refs



ref

SML has a built-in datatype called ref

datatype ’a ref = ref of ’a

But refs are special: the data inside a ref cell is mutable, using the
reassignment operator, :=.

Refs7



Ref methods
(op :=) : ’a ref * ’a -> unit

! : ’a ref -> ’a



Demonstration:
The Ref structure

Now with fewer bugs!



5 minute break



Warning #1:
Keep it fresh



A simple example

val r1 = ref 0

val r2 = r1

val r3 = ref 0

r2 is just an alias for r1, whereas r3 is an independent ref cell.

Refs12



Key Point:
One ref cell is created for every

use of the ref constructor



Warning #2:
Stage carefully



0802.0 (refs.sml)

2 fun f1 x y =

3 let

4 val r = ref x

5 in

6 if y<(!r)

7 then

8 !r + y before r:=y

9 else !r + y

10 end

0802.1 (refs.sml)

13 fun f2 x =

14 let

15 val r = ref x

16 in

17 fn y =>

18 if y<(!r)

19 then

20 !r + y before r:=y

21 else !r + y

22 end

Refs15



When refs and effects are involved, we find ourselves in an annoying situation:
evaluating the same code at different times can give different results.

Our old definition of extensional equivalence is inadequate to guarantee
referential transparency: if e1 and e2 are impure, then e1 ∼= e2 does not
mean e1 and e2 are interchangeable, because they might have different side
effects.

Refs16



2 Other Effects



Colors!

(* YY, with foreground color 0<=XX <=255 *)

"\^[[38;5; XXmYY \^[[0m"

(* YY, with background color 0<=XX <=255 *)

"\^[[48;5; XXmYY \^[[0m"

Other Effects17



Demonstration:
OS.Process.system



Demonstration:
File I/O



Module:
Timing



Summary

• SML is not a pure functional language: there are ways to cause effects

• We can use ref cells to have mutable data

• Effects introduce extra headache when reasoning about code

Other Effects21



Next Time

Review!

Other Effects22



Thank you!


	Effects in SML
	Refs
	Other Effects

