
Games II: The Minimax
Algorithm

15-150 M21

Lecture 0726
26 July 2021



Last Time

• Implemented playable games in SML
• Our game implementation consisted of:
I A GAME (specifying rules, how to make moves, etc.)
I PLAYERs (plays a particular GAME , provides function next_move assigning a

“choice” of move to each state)
I Games are refereed by a CONTROLLER , who facilitates play between two PLAYERs

playing the same game.

• Implemented Nim, where states were of the form (s,Minnie) or
(s,Maxie) for s:int nonnegative. A move is a positive int i which
is less than or equal to Int.min(3,s).

Games II: The Minimax Algorithm1



Making plays

We’ll deal with 4 different kinds of players:

• Human players (our game library includes utilities to accept user input to
determine next_move)

• Directly-implemented players (NimPlayer from tomorrow’s lab)

• MiniMax players (this lecture)

• Alphabeta players (Wednesday’s lecture, games homework)

Games II: The Minimax Algorithm2



0 How to Build Smart
PLAYERs



What do we mean by smart?

We want to design our PLAYERs such that their next_move function makes
decisions which generally lead to it winning the game more often.

How to Build Smart PLAYERs3



Demonstration:
RunNim.play RunNim.HvM

vs.
RunNim.play RunNim.HvP



What do we mean by smart?

We want to design our PLAYERs such that their next_move function makes
decisions which generally lead to it winning the game more often.
So what we want to do is build a player who “knows what’s good for her”: who
is able to assess the moves available to her, decide which one has the most
favorable outcome, and make the corresponding move her next_move .

How to Build Smart PLAYERs5



Game Trees

Formally, we make sense of games mathematically by examining the
corresponding game tree. A game tree is a finitely-branching tree where

• The nodes represent game states

• The edges represent moves

• The root node is the current state of the game, and the rest of the tree
represents different outcomes achieveable by a certain series of moves from
the two players

• The children of a given node are the states reachable from that game state
by the current player making a valid move.

How to Build Smart PLAYERs6



The Players

We’ll call our players ‘Maxie’ and ‘Minnie’.

How to Build Smart PLAYERs7



Demonstration:
Nim Game Tree



Observation:
A good player is thinking a few

moves into the future



Problem:
It’s not always tractable to

search through the entire game
tree



Estimation Nation

• Problem: it’s impractical (and often impossible) to visit every node of the
tree
• Solution: explore some of the tree, and guess
I Have a fixed ‘search depth’ d
I Explore the top d levels of the tree (i.e. the game states than can be reached from the

current one in d moves or fewer)
I When you hit your search depth, use your knowledge of the game to assign an

appropriate value to that state, and treat that value as the value of the node.

• More precisely: we’ll have a function estimate which takes a game state
(for instance, a value of type Nim.State.t) and returns a “guess” of the
goodness or badness of that state.

How to Build Smart PLAYERs11



Estimators : Some design principles

An estimator for a game G is a function assigning “guesses” to each state to
(perhaps roughly) indicate who’s winning.

• The “guesses” will usually be numerical (e.g. ints): lower numbers better
for Minnie, larger numbers better for Maxie. The scale is arbitrary: all
that matters is the relative ordering of states.

• The goal here is to induce an ordering on states, i.e. articulate a sense in
which states are “better” or “worse” than each other (from one player’s
perspective).

• We want “better” to mean “more likely to win” (as best as possible)

• A given GAME will have many possible estimators, with varying degrees of
sophistication, and which may weight different factors differently.

How to Build Smart PLAYERs12



ESTIMATOR.sig

0726.0 (lib/game/estimate/ESTIMATOR.sig)

2 signature ESTIMATOR =

3 sig

4 structure Game : GAME

5

6 type guess

7 datatype est = Definitely of Game.Outcome.t

8 | Guess of guess

9 val compare : est * est -> order

10 val toString : guess -> string

11

12 val estimate : Game.State.t -> guess

13 end
How to Build Smart PLAYERs13



Notes about estimator

• Note that the only operation on values of type est is comparison (the
function compare). We don’t – in general – require guesses to be
numbers at all, we just require that they be ordered.

• We transparently ascribe to this signature. While we don’t require in
general that guess is implemented as int or real , if we do happen to
implement it that way we want to have access to the associated methods
(e.g. from the basis structures Int and Real).

How to Build Smart PLAYERs14



Nim has a perfect estimator

Player p can guarantee a win from (s,flip p)

iff
s mod 4 ∼= 1

(remember
fun flip Maxie = Minnie | flip Minnie = Maxie)

5 4 3 2 1

How to Build Smart PLAYERs15



Nim has a perfect estimator

So, assuming the other player plays optimally, whoever’s turn it is when s is of
the form (4*k)+1 for some k:int will lose.
(* recall a value of Nim.State.t is (s,p)

for some nonnegative int s and either

p=Minnie or p=Maxie *)

(* estimate : Nim.State.t -> int *)

fun estimate (s,p) =

case (s mod 4, p) of

(1,Minnie) => 1

| (1,Maxie) => ∼1
| (_,Minnie) => ∼1
| (_,Maxie) => 1

How to Build Smart PLAYERs16



This is somewhat too clean of an example: most games don’t have perfect
estimators. Rather, the best we can do is make pretty good guesses! To design
an estimator, we’ll usually use some combination of simple heuristics and more
sophisticated theory.

How to Build Smart PLAYERs17



For instance, here’s a common heuristic for chess: for a chess piece p, let v(p)

be given by the following chart

Then put

estimate(S) =

 ∑
Pieces p Maxie
has in play (in S)

v(p)

−
 ∑

Pieces p Minnie
has in play (in S)

v(p)


How to Build Smart PLAYERs18



1 The MiniMax Algorithm



Takeaways

• We should assign each node an estimator guess, its “value”.

• The value of a node should reflect who’s winning from that node, which
depends on the moves available from that state.

• From there, we can fill in the rest of the game tree by assuming the players
play optimally

The MiniMax Algorithm19



Demonstration: Minimax



The MiniMax Algorithm

Fix a search depth d .

1 Traverse the game tree down to the d -th level.(For every node encountered where

the game is over, assign such nodes the value Definitely of whoever the winner is.)

2 Call the estimator to assign values to the d -th level.
3 Work upwards, assigning values to nodes according to the Minnie and Maxie

principles described above
I For Minnie nodes: the value should be the minimum of the values of the child nodes
I For Maxie nodes: the value should be maximum of the values of the child nodes.

Once we’ve filled all the way to the top of the tree (our current state), then we
can decide which move to make based on the estimated values.

The MiniMax Algorithm21



5 Minute Break



2 SML Implementation



Minimax functor

0726.3 (lib/game/estimate/MiniMax.fun)

2 functor MiniMax (Settings : SETTINGS) :> PLAYER

SML Implementation23



Settings

0726.1 (lib/game/estimate/SETTINGS.sig)

2 signature SETTINGS =

3 sig

4

5 structure Est : ESTIMATOR

6

7 val search_depth : int

8

9 end

SML Implementation24



Recall: the PLAYER signature

0726.2 (lib/game/core/PLAYER.sig)

2 signature PLAYER =

3 sig

4

5 structure Game : GAME

6

7 val next_move : Game.State.t -> Game.Move.t

8

9 end

SML Implementation25



Minimax functor

0726.3 (lib/game/estimate/MiniMax.fun)

2 functor MiniMax (Settings : SETTINGS) :> PLAYER

3 where Game = Settings.Est.Game =

4 struct

5 structure Est = Settings.Est

6 structure Game = Est.Game

SML Implementation26



Helpful stuff

0726.4 (lib/game/estimate/MiniMax.fun)

9 type edge = Game.Move.t * Est.est

10 fun valueOf ((_,value) : edge) = value

11 fun moveOf ((move ,_) : edge) = move

12 fun max ((m1,v1):edge , (m2 ,v2):edge):edge =

13 case Est.compare (v1, v2) of

14 LESS => (m2, v2)

15 | _ => (m1 , v1)

16 fun min ((m1,v1):edge , (m2 ,v2):edge):edge =

17 case Est.compare (v1, v2) of

18 GREATER => (m2, v2)

19 | _ => (m1 , v1)

SML Implementation27



Encoding the difference between Minnie and Maxie

reduce1 : (’a * ’a -> ’a) -> ’a Seq.seq -> ’a

REQUIRES: g is total and associative, S is nonempty
ENSURES:
reduce1 g 〈x1 ,...,xn〉 ∼= g(x1 ,g(x2,g(...,, xn)))

0726.5 (lib/game/estimate/MiniMax.fun)

22 (* choose : Player.t -> edge Seq.seq -> edge

*)

23 fun choose Player.Maxie = Seq.reduce1 max

24 | choose Player.Minnie = Seq.reduce1 min

SML Implementation28



Mutual Recursion

fun even 0 = true

| even n = odd(n-1)

and odd 0 = false

| odd n = even (n-1)

SML Implementation29



SML Implementation30



0726.6 (lib/game/estimate/MiniMax.fun)

27 (* search : int -> G.State.t -> edge *)

28 (* REQUIRES: d > 0 *)

29 fun search (d:int) (s:Game.State.t) : edge =

30 choose (Game.player s)

31 (

32 Seq.map

33 (fn m =>

34 (m,

35 evaluate (d-1) (Game.play(s,m)))

36 )

37 (Game.moves s)

38 )

SML Implementation31



0726.7 (lib/game/estimate/MiniMax.fun)

41 (* evaluate:int -> Game.status -> Est.est *)

42 (* REQUIRES: d >= 0 *)

43 and evaluate (d : int) (st : Game.status) :

Est.est =

44 case st of

45 Game.Playing s => (

46 case d of

47 0 => Est.Guess (Est.estimate s)

48 | _ => valueOf (search d s)

49 )

50 | Game.Done oc => Est.Definitely oc

SML Implementation32



0726.8 (lib/game/estimate/MiniMax.fun)

1 val next_move =

2 moveOf o search Settings.search_depth

SML Implementation33



Tomorrow’s Lab:
Estimators & Minimax



Next Time

Optimizing the complexity of minimax, to avoid unnecessary work

SML Implementation35



Thank you!


	How to Build Smart PLAYERs
	The MiniMax Algorithm
	SML Implementation

