Games II: The Minimax Algorithm

15-150 M21

Lecture 0726 26 July 2021

Last Time

- Implemented playable games in SML
- Our game implementation consisted of:
 - ► A GAME (specifying rules, how to make moves, etc.)
 - PLAYERs (plays a particular GAME, provides function next_move assigning a "choice" of move to each state)
 - Games are referred by a CONTROLLER, who facilitates play between two PLAYERs playing the same game.
- Implemented Nim, where states were of the form (s, Minnie) or (s, Maxie) for s: int nonnegative. A move is a positive int i which is less than or equal to Int.min(3,s).

We'll deal with 4 different kinds of players:

- Human players (our game library includes utilities to accept user input to determine next_move)
- Directly-implemented players (NimPlayer from tomorrow's lab)
- MiniMax players (this lecture)
- Alphabeta players (Wednesday's lecture, games homework)

0 How to Build Smart PLAYERs

We want to design our PLAYERs such that their next_move function makes decisions which generally lead to it winning the game more often.

Demonstration:

RunNim.play RunNim.HvM vs.

RunNim.play RunNim.HvP

 dis-cern-ing /də'sərniNG/

adjective

having or showing good judgment.
"the restaurant attracts discerning customers"
Similar: discriminating selective judicious tasteful refined cultivated

We want to design our PLAYERs such that their next_move function makes decisions which generally lead to it winning the game more often. So what we want to do is build a player who "knows what's good for her": who is able to assess the moves available to her, decide which one has the most favorable outcome, and make the corresponding move her next_move. Formally, we make sense of games mathematically by examining the corresponding *game tree*. A game tree is a finitely-branching tree where

- The nodes represent *game states*
- The edges represent *moves*
- The root node is the current state of the game, and the rest of the tree represents different outcomes achieveable by a certain series of moves from the two players
- The children of a given node are the states reachable from that game state by the current player making a valid move.

We'll call our players 'Maxie' and 'Minnie'.

I want to Maximize! I want to MAXIE MINNIE

How to Build Smart PLAYERs

Demonstration: Nim Game Tree

Observation: A good player is thinking a few moves into the future

It's not always tractable to search through the *entire* game tree

- Problem: it's impractical (and often impossible) to visit every node of the tree
- Solution: explore some of the tree, and guess
 - ► Have a fixed 'search depth' d
 - ► Explore the top *d* levels of the tree (i.e. the game states than can be reached from the current one in *d* moves or fewer)
 - ► When you hit your search depth, use your knowledge of the game to assign an appropriate value to that state, and treat that value as the value of the node.
- More precisely: we'll have a function estimate which takes a game state (for instance, a value of type Nim.State.t) and returns a "guess" of the goodness or badness of that state.

An *estimator* for a game G is a function assigning "guesses" to each state to (perhaps roughly) indicate who's winning.

- The "guesses" will usually be numerical (e.g. ints): lower numbers better for Minnie, larger numbers better for Maxie. The scale is arbitrary: all that matters is the relative ordering of states.
- The goal here is to induce an ordering on states, i.e. articulate a sense in which states are "better" or "worse" than each other (from one player's perspective).
- We want "better" to mean "more likely to win" (as best as possible)
- A given GAME will have many possible estimators, with varying degrees of sophistication, and which may weight different factors differently.

ESTIMATOR.sig

0726.0 (lib/game/estimate/ESTIMATOR.sig)

```
<sup>2</sup> signature ESTIMATOR =
3 sig
    structure Game : GAME
4
5
   type guess
6
    datatype est = Definitely of Game.Outcome.t
7
                    Guess of guess
                   8
   val compare : est * est -> order
9
   val toString : guess -> string
10
11
   val estimate : Game.State.t -> guess
12
```

How to Build Smart PLAYERs

- Note that the only operation on values of type est is comparison (the function compare). We don't in general require guesses to be numbers at all, we just require that they be ordered.
- We **transparently** ascribe to this signature. While we don't require in general that guess is implemented as int or real, if we do happen to implement it that way we want to have access to the associated methods (e.g. from the basis structures Int and Real).

15 How to Build Smart PLAYERS

Nim has a perfect estimator

So, assuming the other player plays optimally, whoever's turn it is when s is of the form (4*k)+1 for some k:int will *lose*.

```
(* recall a value of Nim.State.t is (s,p)
   for some nonnegative int s and either
  p=Minnie or p=Maxie *)
(* estimate : Nim.State.t -> int *)
fun estimate (s,p) =
      case (s mod 4, p) of
        (1, Minnie) => 1
      | (1, Maxie) => ~1
      | (_,Minnie) => \sim 1
      | (_, Maxie) => 1
```


how to build an ESTIMATOR

This is somewhat *too* clean of an example: most games don't have perfect estimators. Rather, the best we can do is make pretty good guesses! To design an estimator, we'll usually use some combination of simple heuristics and more sophisticated theory. For instance, here's a common heuristic for chess: for a chess piece p, let v(p) be given by the following chart

Symbol	2	Ĩ	Ĵ	Ï	Ŵ
Piece	pawn	knight	bishop	rook	queen
Value	1	3	3	5	9

Then put

18

$$\texttt{estimate(S)} = \left(\sum_{\substack{\text{Pieces p Maxie} \\ \text{has in play (in S)}}} v(p)\right) - \left(\sum_{\substack{\text{Pieces p Minnie} \\ \text{has in play (in S)}}} v(p)\right)$$

1 The MiniMax Algorithm

- We should assign each node an estimator guess, its "value".
- The value of a node should reflect who's winning from that node, which depends on the moves available from that state.
- From there, we can fill in the rest of the game tree by assuming the players play optimally

Demonstration: Minimax

Fix a search depth d.

- **1** Traverse the game tree down to the *d*-th level.(For every node encountered where the game is over, assign such nodes the value Definitely of whoever the winner is.)
- **2** Call the estimator to assign values to the d-th level.
- B Work upwards, assigning values to nodes according to the Minnie and Maxie principles described above
 - ► For Minnie nodes: the value should be the *minimum* of the values of the child nodes
 - ► For Maxie nodes: the value should be *maximum* of the values of the child nodes.
- Once we've filled all the way to the top of the tree (our current state), then we can decide which move to make based on the estimated values.

5 Minute Break

2 SML Implementation

0726.3 (lib/game/estimate/MiniMax.fun)

2 functor MiniMax (Settings : SETTINGS) :> PLAYER

SML Implementation

```
0726.1 (lib/game/estimate/SETTINGS.sig)
 signature SETTINGS =
2
 sig
3
4
    structure Est : ESTIMATOR
5
6
   val search_depth : int
7
8
 end
9
```

SML Implementation

	0726.2 (lib/game/core/PLAYER.sig)
2	signature PLAYER =
3	sig
4	
5	structure Game : GAME
6	
7	<pre>val next_move : Game.State.t -> Game.Move.t</pre>
8	
9	end

25

0726.3 (lib/game/estimate/MiniMax.fun)

```
2 functor MiniMax (Settings : SETTINGS) :> PLAYER
3 where Game = Settings.Est.Game =
4 struct
5 structure Est = Settings.Est
6 structure Game = Est.Game
```

Helpful stuff

27

0726.4 (lib/game/estimate/MiniMax.fun)

reduce1 : ('a * 'a -> 'a) -> 'a Seq.seq -> 'a REQUIRES: g is total and associative, S is nonempty ENSURES: reduce1 g $\langle x1, \ldots, xn \rangle \cong g(x1, g(x2, g(\ldots, xn)))$

0726.5 (lib/game/estimate/MiniMax.fun)

```
fun even 0 = true
    | even n = odd(n-1)
and odd 0 = false
    | odd n = even (n-1)
```

29

0726.6 (lib/game/estimate/MiniMax.fun)

```
(* search : int -> G.State.t -> edge
                                                      *
27
    (* REQUIRES: d > 0
                                                      *
28
    fun search (d:int) (s:Game.State.t) : edge
29
      choose (Game.player s)
30
31
        Seq.map
32
           (fn m =>
33
             (m,
34
              evaluate (d-1) (Game.play(s,m)))
35
36
           (Game.moves s)
37
38
```

0726.7 (lib/game/estimate/MiniMax.fun)

```
(* evaluate:int -> Game.status -> Est.est *)
41
    (* REQUIRES: d >= 0
                                                  *)
42
    and evaluate (d : int) (st : Game.status) :
43
   Est.est =
      case st of
44
        Game.Playing s => (
45
          case d of
46
            0 => Est.Guess (Est.estimate s)
47
          _ => valueOf (search d s)
48
49
      | Game.Done oc => Est.Definitely oc
50
```

0726.8 (lib/game/estimate/MiniMax.fun)

val next_move =

1

2

33

moveOf o search Settings.search_depth

Tomorrow's Lab: Estimators & Minimax

Optimizing the complexity of minimax, to avoid unnecessary work

Thank you!