
Games I: The Game
Signature

15-150 M21

Lecture 0723
23 July 2021



Why is this in 150?

• Modular Abstraction: notice how the modules system allows us to
logically structure our code, as well as enforce (and make use of) abstraction
boundaries

• Types: Notice how we can use well-chosen datatypes and
pattern-matching to write clear, human-readable, semantic code. This will
be important when there’s so many complex moving parts!

We’ve made a series of design decisions with how we structure our GAME code.
There are many other ways to do it.

Games I: The Game Signature1



Let’s play a game



Nim

The game Nim is played in the following way:

1 The game begins with a certain number of pebbles

2 The players take turns. On their turn, a player may take either 1, 2, or 3
pebbles.

3 The player who takes the last pebble loses

Games I: The Game Signature3



Demonstration: Nim Play



0 Implementing Games in SML



What kind of games?

The games we’ll consider are:

• 2-player (with alternating turns)

• Deterministic (no dice)

• Perfect information (players do not have “private” information)

• Zero-sum (either one player wins and the other loses, or it’s a tie)
• Finitely-branching (on each turn, a player only has finitely-many moves

available to them)
I Not the same thing as finite! There could be infinitely-many possible game states.

These are simplifying assumptions. We can drop some of them, but that would
complicate our analysis.

Implementing Games in SML5



Our Game System (high level)

The implementation of games we’ll use revolves around 3 signatures

• GAME (Nim, Connect4, Tic-Tac-Toe, Checkers)

• PLAYER (Human player, directly-implemented player, MiniMax player,
Alphabeta player)

• CONTROLLER (Controller functor)

Each PLAYER is playing a particular GAME . A CONTROLLER takes two
PLAYERs playing the same GAME , and plays them against each other.

Implementing Games in SML6



Documentation:
Game Reference



SHOW

0723.0 (lib/game/core/SHOW.sig)

2 signature SHOW =

3 sig

4 type t

5 val toString : t -> string

6 end

Implementing Games in SML8



Player

0723.1 (lib/game/core/Player.sml)

2 structure Player =

3 struct

4

5 datatype t = Minnie | Maxie

0723.2 (lib/game/core/Player.sml)

17 val flip = fn

18 Minnie => Maxie

19 | Maxie => Minnie

Implementing Games in SML9



GAME

0723.3 (lib/game/core/GAME.sig)

2 signature GAME =

3 sig

4

5 structure State : SHOW (* game states *)

6 structure Move : SHOW (* moves *)

7 structure Outcome : SHOW (* results *)

Implementing Games in SML10



GAME

0723.3 (lib/game/core/GAME.sig)

9 datatype status = Playing of State.t

10 | Done of Outcome.t

11

12 exception InvalidMove of string

13

14 val play : State.t * Move.t -> status

15

16 val player : State.t -> Player.t

17 val moves : State.t -> Move.t Seq.t

18

19 end

Implementing Games in SML11



(code for Nim : GAME)

Implementing Games in SML12



PLAYER.sig

0723.4 (lib/game/core/PLAYER.sig)

2 signature PLAYER =

3 sig

4

5 structure Game : GAME

6

7 val next_move : Game.State.t -> Game.Move.t

8

9 end

Tuesday in lab, you’ll write NimPlayer :> PLAYER which plays optimally.

Implementing Games in SML13



CONTROLLER

0723.5 (lib/game/core/CONTROLLER.sig)

2 signature CONTROLLER =

3 sig

4

5 structure Game : GAME

6

7 val play : Game.State.t -> Game.Outcome.t

8

9 end

Implementing Games in SML14



0723.6 (lib/game/core/Controller.fun)

2 functor Controller (

3 structure Game : GAME

4 structure Player1 : PLAYER

5 structure Player2 : PLAYER

6 sharing Game = Player1.Game = Player2.Game

7 ) : CONTROLLER =

8 struct

Implementing Games in SML15



So now we can play. . .

How can we design interesting PLAYERs to play against us when the game is
less tractable? How can we train them to play intelligently?

Implementing Games in SML16



Next Week

Programming intelligent players

• Estimators

• The Minimax Algorithm

• Alpha-Beta Pruning

Implementing Games in SML17



Thank you!


	Implementing Games in SML

