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Why is this in 150?

• Modular Abstraction: notice how the modules system allows us to
logically structure our code, as well as enforce (and make use of) abstraction
boundaries

• Types: Notice how we can use well-chosen datatypes and
pattern-matching to write clear, human-readable, semantic code. This will
be important when there’s so many complex moving parts!

We’ve made a series of design decisions with how we structure our GAME code.
There are many other ways to do it.
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Let’s play a game



Nim

The game Nim is played in the following way:

1 The game begins with a certain number of pebbles

2 The players take turns. On their turn, a player may take either 1, 2, or 3
pebbles.

3 The player who takes the last pebble loses

Games I: The Game Signature3



Demonstration: Nim Play



0 Implementing Games in SML



What kind of games?

The games we’ll consider are:

• 2-player (with alternating turns)

• Deterministic (no dice)

• Perfect information (players do not have “private” information)

• Zero-sum (either one player wins and the other loses, or it’s a tie)
• Finitely-branching (on each turn, a player only has finitely-many moves

available to them)
I Not the same thing as finite! There could be infinitely-many possible game states.

These are simplifying assumptions. We can drop some of them, but that would
complicate our analysis.
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Our Game System (high level)

The implementation of games we’ll use revolves around 3 signatures

• GAME (Nim, Connect4, Tic-Tac-Toe, Checkers)

• PLAYER (Human player, directly-implemented player, MiniMax player,
Alphabeta player)

• CONTROLLER (Controller functor)

Each PLAYER is playing a particular GAME . A CONTROLLER takes two
PLAYERs playing the same GAME , and plays them against each other.
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Documentation:
Game Reference



SHOW

0723.0 (lib/game/core/SHOW.sig)

2 signature SHOW =

3 sig

4 type t

5 val toString : t -> string

6 end
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Player

0723.1 (lib/game/core/Player.sml)

2 structure Player =

3 struct

4

5 datatype t = Minnie | Maxie

0723.2 (lib/game/core/Player.sml)

17 val flip = fn

18 Minnie => Maxie

19 | Maxie => Minnie
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GAME

0723.3 (lib/game/core/GAME.sig)

2 signature GAME =

3 sig

4

5 structure State : SHOW (* game states *)

6 structure Move : SHOW (* moves *)

7 structure Outcome : SHOW (* results *)
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GAME

0723.3 (lib/game/core/GAME.sig)

9 datatype status = Playing of State.t

10 | Done of Outcome.t

11

12 exception InvalidMove of string

13

14 val play : State.t * Move.t -> status

15

16 val player : State.t -> Player.t

17 val moves : State.t -> Move.t Seq.t

18

19 end
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(code for Nim : GAME)
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PLAYER.sig

0723.4 (lib/game/core/PLAYER.sig)

2 signature PLAYER =

3 sig

4

5 structure Game : GAME

6

7 val next_move : Game.State.t -> Game.Move.t

8

9 end

Tuesday in lab, you’ll write NimPlayer :> PLAYER which plays optimally.
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CONTROLLER

0723.5 (lib/game/core/CONTROLLER.sig)

2 signature CONTROLLER =

3 sig

4

5 structure Game : GAME

6

7 val play : Game.State.t -> Game.Outcome.t

8

9 end
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0723.6 (lib/game/core/Controller.fun)

2 functor Controller (

3 structure Game : GAME

4 structure Player1 : PLAYER

5 structure Player2 : PLAYER

6 sharing Game = Player1.Game = Player2.Game

7 ) : CONTROLLER =

8 struct
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So now we can play. . .

How can we design interesting PLAYERs to play against us when the game is
less tractable? How can we train them to play intelligently?
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Next Week

Programming intelligent players

• Estimators

• The Minimax Algorithm

• Alpha-Beta Pruning

Implementing Games in SML17



Thank you!
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