

e We have a signature SEQUENCE and some structure Seq opaquely
ascribing to it, satisfying the specs given in the sequence reference document

e SEQUENCE contains an abstract type ’a seq, representing sequences

e Sequences combine the best of both lists and trees: they are linearly-ordered
and easily indexed (like lists) but highly parallel (like trees)

Cost graph analysis

2 Parallel Algorithms

D G (0 b o (O
rea=

0 Spec/Code/Cost Graph/Big-O

interleave ’a seq * ’a seq —-> ’a seq

REQUIRES: true
ENSURES: interleave (S1,82) = S where |S| =2 - min(|S1],|S2])

and S consists of alternating elements of S1 and S2.

0721.0 (seqFns.sml)

s|fun interleave (S1,S82) =

6 let

7 val n = Int.min(Seq.length S1,
g Seq.length S2)
9

10 fun select 0 1 = Seq.nth S1 1

11 | select _ i = Seq.nth S2 i

12 1n

13 Seq.tabulate

14 (fn i => select (i mod 2) (i div 2))
15 (n*x2)

16 end

Key Skill:
Annotating with cost bounds

Demonstration:
Cost Graph Analysis

26

27

28

29

30

31

32

0721.1 (seqFns.sml)

infix |>
fun x |>

f f x

fun mappartial f S =
S

> (Seq.map f)
> (Seq.filter Option.isSome)
> (Seq.map Option.valOf)

(map f >

Work: O(n)

<filter isSome Span O(log n)

Work: O(n
<map va10f> Span O(l())

8 Spec/Code/Cost Graph/Big-O

Demonstration:
HOF cost graph analysis

10

(map T >

<filter isSome

<map valDf>

Spec/Code/Cost Graph/Big-O

n—1
Work: >~ Wk (sri1)
i=0

n—1
Span: max St (sri1)

|—=

Work: O(n)
Span O(log n)

Work: O(

Span 0(157)

b-minute break

1 Reduce

reduce : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a
REQUIRES:
e g is total and associative.

e z is the identity for g.

ENSURES: reduce g z S uses the function g to combine the elements of S using z as a
base case (analogous to foldr g z L for lists, but with a less-general type).

Work: O (|S]), Span: O (log|S|), with constant-time g.

0721.2 (seqFns.sml)

a|(*x 0C|IS|) work, 0(log |S|) span x*)
w|val sum = Seq.reduce op+ O

mapreduce : (’a -> ’b) -> ’b -> (b * ’b -> ’b) -> ’a seq -> ’b

REQUIRES: g and f meet the preconditions of reduce and map, respectively.
ENSURES: mapreduce f z g S= reduce g z (map f S)
Work: O (|S|), Span: O (log |S|), with constant-time g and f.

0721.3 (seqFns.sml)

w|(x 0C|IS|) work, O0Clog [S|) span x*)
w|val sumNonneg =
Seq.mapreduce (fn x => Int.max(x,0)) 0 op+

48

To analyze reduce and mapreduce with non-constant-time g, we need to
know more about how they're implemented.

You may assume reduce is implemented according to the following
divide-and-conquer algorithm: to calculate reduce g z S,

1. Split S into two halves, S1 and S2 (i.e. Seq.append(S1,82) = S)

2. Recursively evaluate reduce g z S1 and reduce g z S2 to values
v1 and v2, respectively

3. Calculate g(v1,v2)
With base cases:
e reduce g z () =z
e reduce g z (x) = g(x,2z)

To analyze reduce and mapreduce with non-constant-time g, we need to
know more about how they're implemented.

You may assume mapreduce is implemented according to the following
divide-and-conquer algorithm: to calculate mapreduce f z g S,

1. Split S into two halves, S1 and S2 (i.e. Seq.append(S1,82) = S)
2. Recursively evaluate mapreduce f z g S1 and

mapreduce f z g S2 tovalues vl and v2, respectively
3. Calculate g(v1,v2)

With base cases:
e mapreduce f z g () =z
e mapreduce f z g (x) = g(f x,2z)

Visual Aid:

reduce and mapreduce cost
graphs

fun msort [] = []

| msort [x] = [x]
| msort L =
let

val (A,B) = split L
in

merge (msort A,msort B)
end

merge : (’a * ’a -> order) -> ’a seq * ’a seq -> ’a seq
REQUIRES:
e S1 and S2 are both cmp-sorted.

e cmp is total.

ENSURES: merge cmp (S1,S2) returns a sorted permutation of append (S1,S2)

Work: O (|S1|+ |S2]), Span: O (log(|S1| 4+ [S2])), with constant-time cmp.

fun msort cmp =
mapreduce singleton (empty()) (merge cmp)

Demonstration:
msort Cost Graph Analysis

sort : (’a * ’a -> order) -> ’a seq -> ’a seq

REQUIRES: cmp is total.

ENSURES: sort cmp S returns a permutation of S that is sorted according to cmp.
The sort is stable: elements that are considered equal by cmp remain in the same order they

were in S.

Work: O (|S|log|S])), Span: O (lt:}g:zg2 S|), with constant-time cmp.

e We can analyze sequence functions using cost graphs
e including HOFs with non-constant-time arguments

e \We can use the divide-and-conquer nature of reduce to understand its
asymptotic complexity

e Fun and games (using sequences!)

Thank you!

	Spec/Code/Cost Graph/Big-O
	Reduce

