
Parallel Algorithms

15-150 M21

Lecture 0721
21 July 2021

Review: Sequences

• We have a signature SEQUENCE and some structure Seq opaquely
ascribing to it, satisfying the specs given in the sequence reference document

• SEQUENCE contains an abstract type ’a seq, representing sequences

• Sequences combine the best of both lists and trees: they are linearly-ordered
and easily indexed (like lists) but highly parallel (like trees)

Parallel Algorithms1

Cost graph analysis

Parallel Algorithms2

Cost graph analysis

Parallel Algorithms2

Cost graph analysis

Parallel Algorithms2

0 Spec/Code/Cost Graph/Big-O

interleave : ’a seq * ’a seq -> ’a seq

REQUIRES: true
ENSURES: interleave(S1 ,S2) =⇒ S where |S| = 2 ·min(|S1| , |S2|)
and S consists of alternating elements of S1 and S2.

Spec/Code/Cost Graph/Big-O3

0721.0 (seqFns.sml)

5 fun interleave (S1 ,S2) =

6 let

7 val n = Int.min(Seq.length S1,

8 Seq.length S2)

9

10 fun select 0 i = Seq.nth S1 i

11 | select _ i = Seq.nth S2 i

12 in

13 Seq.tabulate

14 (fn i => select (i mod 2) (i div 2))

15 (n*2)

16 end

Spec/Code/Cost Graph/Big-O4

Key Skill:
Annotating with cost bounds

Demonstration:
Cost Graph Analysis

Recall: mappartial

0721.1 (seqFns.sml)

26 infix |>

27 fun x |> f = f x

28

29 fun mappartial f S =

30 S |> (Seq.map f)

31 |> (Seq.filter Option.isSome)

32 |> (Seq.map Option.valOf)

Spec/Code/Cost Graph/Big-O7

map f

filter isSome

map valOf

Work: O(n)
Span O(log n)

Work: O(n)
Span O(1)

Spec/Code/Cost Graph/Big-O8

Demonstration:
HOF cost graph analysis

map f

filter isSome

map valOf

Work:
n−1∑
i=0

Wf(S[i])

Span:
n−1
max
i=0

Sf(S[i])

Work: O(n)
Span O(log n)

Work: O(n)
Span O(1)

Spec/Code/Cost Graph/Big-O10

5-minute break

1 Reduce

0721.2 (seqFns.sml)

41 (* O(|S|) work , O(log |S|) span *)

42 val sum = Seq.reduce op+ 0

Reduce12

Map and reduce, together at last!

0721.3 (seqFns.sml)

46 (* O(|S|) work , O(log |S|) span *)

47 val sumNonneg =

48 Seq.mapreduce (fn x => Int.max(x,0)) 0 op+

Reduce13

Divide-and-Conquer

To analyze reduce and mapreduce with non-constant-time g, we need to
know more about how they’re implemented.
You may assume reduce is implemented according to the following
divide-and-conquer algorithm: to calculate reduce g z S,

1. Split S into two halves, S1 and S2 (i.e. Seq.append(S1,S2) ∼= S)

2. Recursively evaluate reduce g z S1 and reduce g z S2 to values
v1 and v2, respectively

3. Calculate g(v1 ,v2)

With base cases:

• reduce g z 〈〉 =⇒ z

• reduce g z 〈x〉 =⇒ g(x,z)

Reduce14

Divide-and-Conquer

To analyze reduce and mapreduce with non-constant-time g, we need to
know more about how they’re implemented.
You may assume mapreduce is implemented according to the following
divide-and-conquer algorithm: to calculate mapreduce f z g S,

1. Split S into two halves, S1 and S2 (i.e. Seq.append(S1,S2) ∼= S)

2. Recursively evaluate mapreduce f z g S1 and
mapreduce f z g S2 to values v1 and v2, respectively

3. Calculate g(v1 ,v2)

With base cases:

• mapreduce f z g 〈〉 =⇒ z

• mapreduce f z g 〈x〉 =⇒ g(f x,z)

Reduce15

Visual Aid:
reduce and mapreduce cost

graphs

We’ve seen a divide-and-conquer algorithm. . .

fun msort [] = []

| msort [x] = [x]

| msort L =

let

val (A,B) = split L

in

merge(msort A,msort B)

end

Reduce17

fun msort cmp =

mapreduce singleton (empty ()) (merge cmp)

Reduce18

Demonstration:
msort Cost Graph Analysis

Reduce20

Summary

• We can analyze sequence functions using cost graphs

• including HOFs with non-constant-time arguments

• We can use the divide-and-conquer nature of reduce to understand its
asymptotic complexity

Reduce21

Next Time

• Fun and games (using sequences!)

Reduce22

Thank you!

	Spec/Code/Cost Graph/Big-O
	Reduce

