Regular Expressions I

Languages, Equality Types, and the regexp type

15-150 M21

Lecture 0707 07 July 2021

O Decision Problems

Birth Year of Computation

Decision Problems

Warning: Great Theoretical Ideas

- When working with Turing computability, we assume we have some (usually finite) set Σ our **alphabet**
- We'll be computing with the set Σ^* of all finite strings/sequences/lists of elements of Σ ("strings over Σ "). For instance,

$$\{a\}^* = \{\epsilon, a, aa, aaa, aaaa, aaaaa, aaaaaa, ...\}$$

Computation is done by machines, which take some input (encoded as a string over some alphabet Σ) and either accepts it or rejects it.

$$M : \Sigma^* \rightharpoonup \{ ACCEPT, REJECT \}$$

This is a partial function, because it could loop forever on some inputs.

For any Turing machine M, we write

$$\mathcal{L}(M) = \{s \in \Sigma^* \mid M(s) = \mathsf{ACCEPT}\}$$

for the **language** of *M*.

- **Question**: Are all subsets $L \subseteq \Sigma^*$ computable: is there a Turing Machine *M* such that $L = \mathcal{L}(M)$? Thm. (Turing, 1936) No!
 - Σ^* is countably-infinite, so $\mathcal{P}(\Sigma^*)$ is uncountably infinite. But there are only countably-many possible Turing Machines
 - There are explicit subsets of Σ^* which are not computable, e.g. **HALTS**

We can have a similar idea in functional programming:

 $M : t \rightarrow bool$

- M : Sigma list -> bool where Sigma is the alphabet type (e.g. char).
- **Question:** For which sets *L* of values of type Sigma list is there an SML function M:Sigma list -> bool such that

 $L = \{v : \text{Sigma list} | M(v) \implies true\}?$

Thm. For each finite set Σ (with corresponding SML type Sigma), and each subset L of Σ^* the following are equivalent:

- there exists a Turing Machine M such that $L = \mathcal{L}(M)$
- there exists an SML function M : Sigma list -> bool such that

$$L = \{v: \texttt{Sigma list} \mid \texttt{M(v)} \Longrightarrow \texttt{true}\}$$

A type t is said to be an **equality type** if there is a total function

(op =): t * t -> bool deciding whether elements of that type are equal or not.

Examples: int, bool, char, string, int list
Non-Examples: real, int -> int

We can specify that a polymorphic type variable *must* be instantiated to an equality type by writing it with double tick-marks:

(op =) : ''a * ''a -> bool
Fn.equal : ''a -> ''a -> bool
Fn.notEqual : ''a -> ''a -> bool

Module: Language

https://github.com/smlhelp/aux-library/ blob/main/Language.sml

aux-library/Language.sml

33

fun everything (x:'S list) = true

For each type Sigma, we identify each L:Sigma language with the set of values s:Sigma list such that $L(v) \implies true$.

- val everything : 'S language 7 val nothing : 'S language 8 val singleton : 'S list -> 'S language
- aux-library/Language.sml

9

aux-library/Language.sml			
11			
12	val	Or	
13	•	'S language * 'S language -> 'S language	
14	val	And	
15	•	'S language * 'S language -> 'S language	
16	val	Not	
17	•	'S language -> 'S language	
18	val	Xor	

Substrings and Superstrings

13 Decision Problems

Goal: Write more complex languages

5-minute break

Take Sigma to be char. We have a special way of dealing with char lists...strings!

String.explode : string -> char list
String.implode : char list -> string

aux-library/Language.sml

1 Regular Expressions

Come up with an SML datatype whose elements encode different languages

18 Regular Expressions

Module: Regexp

aux-library/Regexp.sml

```
26 end
27 structure Regexp : REGEXP =
28 struct
29 datatype ''S regexp =
30 Zero
31 | One
32 | Const of ''S
```

Note: you can't actually require that the parameter of a datatype be an equality type. SML will treat this the same as datatype 'S regexp = ..., but the 'S reminds us to use this with equality types

A datatype like any other

aux-library/Regexp.sml

34	Times of ''S regexp * ''S regexp
35	Star of ''S regexp
36	
37	fun depth Zero = 0
38	depth One = 0
39	$ $ depth (Const(_)) = 0
40	depth (Plus(R1,R2)) =
41	1 + Int.max(depth R1,depth R2)
42	depth (Times(R1,R2)) =

Idea: For each R : Sigma regexp, define the language $\mathcal{L}(R)$ to be the set of all values of type Sigma list which "match" or "are accepted" by R. We'll do this recursively based on R.

```
LL : 'S regexp -> 'S language
REQUIRES: true
ENSURES: LL(R) is a total function deciding \mathcal{L}(R), i.e. LL R s \Longrightarrow true
for all s \in \mathcal{L}(R), and LL R s \Longrightarrow false for all s \notin \mathcal{L}(R).
```

• Const v only matches with [v]

$$\mathcal{L}(\texttt{Const v}) = \{ [v] \}$$

• One only matches with []

$$\mathcal{L}(\texttt{One}) = \{\texttt{[]}\}$$

• Zero does not match with anything

$$\mathcal{L}(\texttt{Zero}) = \emptyset$$

- Plus(R1,R2) matches with any list which matches either R1 or R2 $\mathcal{L}(\texttt{Plus(R1,R2)}) = \mathcal{L}(\texttt{R1}) \cup \mathcal{L}(\texttt{R2})$
- Times(R1,R2) matches with any list consisting of an R1 list appended to an R2 list

 $\mathcal{L}(\texttt{Times(R1,R2)}) = \{\texttt{v1@v2} ~|~ \texttt{v1} \in \mathcal{L}(\texttt{R1}) \texttt{ and } \texttt{v2} \in \mathcal{L}(\texttt{R2})\}$

• Star(R) matches with any list consisting of finitely-many R-matching lists appended together

 $\mathcal{L}(\texttt{Star}(\texttt{R})) = \{\texttt{v}_1 @ \texttt{v}_2 @ \dots @ \texttt{v}_n \ | \ n \in \mathbb{N} \text{ and } \texttt{v}_i \in \mathcal{L}(\texttt{R}) \text{ for each } 1 \leq i \leq n \}$

Note: [] $\in \mathcal{L}(\text{Star}(R))$ for all R.

Next Time: How Regexp.LL is implemented

Thank you!