
Regular Expressions I

Languages, Equality Types, and
the regexp type

15-150 M21

Lecture 0707
07 July 2021



0 Decision Problems



Birth Year of Computation

Decision Problems1



Warning: Great Theoretical
Ideas



Preliminary: Alphabets

When working with Turing computability, we assume we have some (usually
finite) set Σ – our alphabet

We’ll be computing with the set Σ∗ of all finite strings/sequences/lists of
elements of Σ (“strings over Σ”). For instance,

{a}∗ = {ε, a, aa, aaa, aaaa, aaaaa, aaaaaa, . . .}

Decision Problems3



Turing’s Notion of Computation

Computation is done by machines, which take some input (en-
coded as a string over some alphabet Σ) and either accepts it or
rejects it.

M : Σ∗ ⇀ {ACCEPT,REJECT}
This is a partial function, because it could loop forever on some
inputs.

For any Turing machine M , we write

L(M) = {s ∈ Σ∗ | M(s) = ACCEPT}
for the language of M .

Decision Problems4



Computability

Question: Are all subsets L ⊆ Σ∗ computable: is there a Turing Machine M
such that L = L(M)?

Thm. (Turing, 1936) No!

• Σ∗ is countably-infinite, so P (Σ∗) is uncountably infinite. But there are
only countably-many possible Turing Machines

• There are explicit subsets of Σ∗ which are not computable, e.g. HALTS

Decision Problems5



Typed Functional Decision Problems

We can have a similar idea in functional programming:

M : t -> bool

M : Sigma list -> bool

where Sigma is the alphabet type (e.g. char).

Question: For which sets L of values of type Sigma list is there an SML
function M:Sigma list -> bool such that

L = {v:Sigma list | M(v) =⇒ true}?

Decision Problems6



Turing Completeness of SML

Thm. For each finite set Σ (with corresponding SML type Sigma), and each
subset L of Σ∗ the following are equivalent:

• there exists a Turing Machine M such that L = L(M)

• there exists an SML function M : Sigma list -> bool such that

L = {v:Sigma list | M(v) =⇒ true}

Decision Problems7



Decidable Equality

A type t is said to be an equality type if there is a total function
(op =): t * t -> bool deciding whether elements of that type are
equal or not.
Examples: int, bool , char , string , int list

Non-Examples: real , int -> int

We can specify that a polymorphic type variable must be instantiated to an
equality type by writing it with double tick-marks:

(op =) : ’’a * ’’a -> bool

Fn.equal : ’’a -> ’’a -> bool

Fn.notEqual : ’’a -> ’’a -> bool

Decision Problems8



Module: Language
https://github.com/smlhelp/aux-library/

blob/main/Language.sml

https://github.com/smlhelp/aux-library/blob/main/Language.sml
https://github.com/smlhelp/aux-library/blob/main/Language.sml


aux-library/Language.sml

33 fun everything (x:’S list) = true

For each type Sigma , we identify each L:Sigma language with the set of
values s:Sigma list such that L(v) =⇒ true .

Decision Problems10



Simple Languages

aux-library/Language.sml

7 val everything : ’S language

8 val nothing : ’S language

9 val singleton : ’’S list -> ’’S language

Decision Problems11



Language Combinators

aux-library/Language.sml

11

12 val Or

13 : ’S language * ’S language -> ’S language

14 val And

15 : ’S language * ’S language -> ’S language

16 val Not

17 : ’S language -> ’S language

18 val Xor

Decision Problems12



Substrings and Superstrings

Decision Problems13



Goal: Write more complex
languages



5-minute break



string versus char list

Take Sigma to be char . We have a special way of dealing with
char lists. . . strings!

String.explode : string -> char list

String.implode : char list -> string

aux-library/Language.sml

Decision Problems16



1 Regular Expressions



Idea:
Come up with an SML datatype whose elements encode

different languages



More Exactly

We’ll define a datatype parametrized by a single equality type variable

datatype ’’S regexp = ...

such that each value R : t regexp defines a language

L(R) = {v : t list | v “matches with” R}

Regular Expressions18



Module: Regexp
https://github.com/smlhelp/aux-library/

blob/main/Regexp.sml

(requires Language.sml in the same directory)

https://github.com/smlhelp/aux-library/blob/main/Regexp.sml
https://github.com/smlhelp/aux-library/blob/main/Regexp.sml


aux-library/Regexp.sml

26 end

27 structure Regexp : REGEXP =

28 struct

29 datatype ’’S regexp =

30 Zero

31 | One

32 | Const of ’’S

Note: you can’t actually require that the parameter of a datatype be an equality
type. SML will treat this the same as datatype ’S regexp = ..., but
the ’’S reminds us to use this with equality types

Regular Expressions20



A datatype like any other

aux-library/Regexp.sml

34 | Times of ’’S regexp * ’’S regexp

35 | Star of ’’S regexp

36

37 fun depth Zero = 0

38 | depth One = 0

39 | depth (Const(_)) = 0

40 | depth (Plus(R1 ,R2)) =

41 1 + Int.max(depth R1,depth R2)

42 | depth (Times(R1 ,R2)) =

Regular Expressions21



Idea: For each R : Sigma regexp , define the language L(R) to be the set
of all values of type Sigma list which “match” or “are accepted” by R.
We’ll do this recursively based on R.

LL : ’’S regexp -> ’’S language

REQUIRES: true
ENSURES: LL(R) is a total function deciding L(R), i.e. LL R s =⇒ true

for all s ∈ L(R), and LL R s =⇒ false for all s 6∈ L(R).

Regular Expressions22



The Base Cases

• Const v only matches with [v]

L(Const v) = {[v]}

• One only matches with []

L(One) = {[]}

• Zero does not match with anything

L(Zero) = ∅

Regular Expressions23



Binary Recursive Cases

• Plus(R1,R2) matches with any list which matches either R1 or R2

L(Plus(R1,R2)) = L(R1) ∪ L(R2)

• Times(R1,R2) matches with any list consisting of an R1 list appended
to an R2 list

L(Times(R1,R2)) = {v1@v2 | v1 ∈ L(R1) and v2 ∈ L(R2)}

Regular Expressions24



Star

• Star(R) matches with any list consisting of finitely-many R-matching lists
appended together

L(Star(R)) = {v1@v2@...@vn | n ∈ N and v i ∈ L(R) for each 1 ≤ i ≤ n}

Note: [] ∈ L(Star(R)) for all R.

Regular Expressions25



Next Time:
How Regexp.LL is implemented



Thank you!


	Decision Problems
	Regular Expressions

