
Continuation Passing
Style

15-150 M21

Lecture 0628
28 June 2021



15-150 Principles of Functional Programming

X Basics of Functional Computation

X Induction and Recursion

X Polymorphism & Higher-Order Functions

• Functional Control Flow

• The SML Modules System

• Applications & Connections

Continuation Passing Style1



Attunement: Converting to
Tail-Recursive Form



Recall: Tail Calls and Tail Recursion

Defn. A function application f(x) is in tail position in an expression e if,
whenever f(x) is evaluated as part of evaluating e, the overall value of e is the
value of f(x).

• Example: case L of [] => false | (x::xs) => f(x)

• Non-Example: if f(x) then 7 else 5

A recursive function is said to be tail recursive if all of its recursive calls are in
tail position.

fun foldl g z [] = z

| foldl g z (x::xs) = foldl g (g(x,z)) xs

Continuation Passing Style3



Why we like tail recursion

• Sometimes, it’s asymptotically
faster (trev vs. rev)

• Code can be optimized to make use
of less stack space

Continuation Passing Style4



foldl (op^) "!" ["H","E","L","L","O"]

=⇒ foldl (op^) "H!" ["E","L","L","O"]

=⇒ foldl (op^) "EH!" ["L","L","O"]

=⇒ foldl (op^) "LEH!" ["L","O"]

=⇒ foldl (op^) "LLEH!" ["O"]

=⇒ foldl (op^) "OLLEH!" []

=⇒ "OLLEH!"

Continuation Passing Style5



Could make exp tail recursive

fun exp 0 = 1

| exp n = 2 * exp(n-1)

fun texp (0,acc) = acc

| texp (n,acc) = texp(n-1,2*acc)

Continuation Passing Style6



Can we do the same with pow?

fun square x = x * x

fun pow 0 = 1

| pow n =

case (n mod 2) of

0 => square(pow(n div 2))

| _ => 2* square(pow(n div 2))

Continuation Passing Style7



Idea:
Use a more sophisticated accumulator which

“remembers” to square (or square-and-double) the
result at the end



0 Continuations



t1 ->(t2-> ’a) -> ’a



Continuations

add : int -> int -> (int -> ’a) -> ’a

REQUIRES: true
ENSURES: add m n k ∼= k(m+n)

mul : int -> int -> (int -> ’a) -> ’a

REQUIRES: true
ENSURES: mul m n k ∼= k(m*n)

0628.0 (continuations.sml)

3 fun add m n k = k(m+n)

4 fun mul m n k = k(m*n)

Continuations10



Continuation Pipelines

0628.1 (continuations.sml)

8 fun foo u v w x y z =

9 mul u w (fn res1 =>

10 add v res1 (fn res2 =>

11 mul x y (fn res3 =>

12 add res2 res3 (fn res4 =>

13 mul res4 z Fn.id ))))

Continuations11



Continuation Pipelines

0628.2 (continuations.sml)

17 fun foo ’ u v w x y z k =

18 mul u w (fn res1 =>

19 add v res1 (fn res2 =>

20 mul x y (fn res3 =>

21 add res2 res3 (fn res4 =>

22 mul res4 z k))))

Continuations12



Today’s Slogan:
Functions are accumulators



Using the continuation for recursion

fun exp 0 = 1 | exp n = 2 * exp(n-1)

expCPS : int -> (int -> ’a) -> ’a

REQUIRES: n>=0
ENSURES: expCPS n k ∼= k(exp n)

0628.3 (accum.sml)

10 fun expCPS 0 k = k 1

11 | expCPS n k =

12 expCPS (n-1) (fn res => k(2*res))

Continuations14



expCPS 3 Fn.id

=⇒ expCPS 2 (fn exp2 => Fn.id(2* exp2))

=⇒ expCPS 1

(fn exp1 =>

(fn exp2 => Fn.id(2* exp2))

(2* exp1)

)

=⇒ expCPS 0

(fn exp0 =>

(fn exp1 =>

(fn exp2 => Fn.id(2* exp2))

(2* exp1)

)

(2* exp0)

)Continuations15



=⇒ (fn exp0 =>

(fn exp1 =>

(fn exp2 => Fn.id(2* exp2))

(2* exp1)

)

(2* exp0))

) 1

=⇒ (fn exp1 =>

(fn exp2 => Fn.id(2* exp2))

(2* exp1)

) (2*1)

=⇒ (fn exp2 => Fn.id(2* exp2)) (2*2)

=⇒ Fn.id (2*4)

=⇒ 8

Continuations16



Proof of correctness

Thm. 1 For all types t, all values k : int -> t, and all values n with
n>=0,

expCPS n k ∼= k(exp n)

Proof. by simple induction on n.
BC n=0. Let k be arbitrary.

expCPS 0 k ∼= k 1 ∼= k(exp 0)

by defn of expCPS and exp.

Continuations17



Proof of correctness

Proof.(continued)
IS n=m+1 for some value m:int with m>=0.
IH For all values g : int -> t,

expCPS m g ∼= g(exp m)

Let k be arbitrary.

expCPS (m+1) k
∼= expCPS m (fn res => k(2* res)) (defn expCPS)
∼= (fn res => k(2*res)) (exp m) IH
∼= k(2 * exp m) (exp m valuable for m>=0)
∼= k(exp (m+1)) (defn exp)

Continuations18



CPS version

For each function f : t1 -> t2, we can define its “CPS version” which
takes a continuation and performs the same task as f.

CPS (continuation passing style):

• CPS functions always take in continuation(s) as arguments

• Recursive CPS functions are always tail recursive

• CPS functions only ever call their continuations in tail position

Continuations19



Advantages to this approach

• Tail recursion: this is a technique to make any function tail recursive

• Explicitly name the result of recursive call

• Make the control flow explicit (and therefore manipulable)

Continuations20



Can do the fast version too

0628.4 (accum.sml)

16 fun powCPS 0 k = k 1

17 | powCPS n k =

18 (case (n mod 2) of

19 0 =>

20 powCPS (n div 2) (fn res=>k(res*res))

21 | _ =>

22 powCPS (n-1) (fn res => k(2*res)))

Continuations21



Key Skill: CPS Conversion



Things you need:
“Direct-style” implementation

&

CPS spec



Simpler Example

fun map f [] = []

| map f (x::xs) = f(x) :: map f xs

mapCPS : (’a -> ’b) -> ’a list -> (’b list -> ’c)

-> ’c

REQUIRES: f is total
ENSURES: mapCPS f L k ∼= k(map f L)

Continuations24



0628.7 (accum.sml)

26 fun mapCPS f [] k = k []

27 | mapCPS f (x::xs) k =

28 mapCPS f xs (fn res => k((f x)::res))

Continuations25



More sophisticated example

filterCPS : (’a -> bool) -> ’a list ->

(’a list -> ’b) -> ’b

REQUIRES: p is total
ENSURES: filterCPS p L k ∼= k(filter p L)

0628.5 (accum.sml)

47 fun filterCPS p [] k = k []

48 | filterCPS p (x::xs) k =

49 case (p x) of

50 true => filterCPS p xs

51 (fn res => k(x::res))

52 | false => filterCPS p xs k
Continuations26



Another way of writing it

0628.6 (accum.sml)

56 fun filterCPS ’ p [] k = k []

57 | filterCPS ’ p (x::xs) k =

58 let

59 fun k’ res = if p x

60 then k(x::res)

61 else k(res)

62 in

63 filterCPS ’ p xs k’

64 end

Continuations27



5-minute break



1 Continuation Control Flow



Summary so far
Given f : t1 -> t2, we can define its CPS version,

fCPS : t1 -> (t2 -> ’a) -> ’a

defined by the equivalence

fCPS X k ∼= k(f(X))



Consider:
If we have a direct-style function

foo : t1 -> t2 option

then what does its CPS version

fooCPS : t1 -> (t2 option -> ’a) -> ’a

do?



t1 ->

(t2 option -> ’a)(t2 -> ’a) -> (unit -> ’a)

-> ’a



Backtracking with success and failure continuations

We’ll now be supplying two continuations. If t2 is the “result” type of the
function (i.e. the type of data we want to pass into the continuation) and t3

some other type, we’ll supply:

sc : t2 -> t3 (* "success continuation" *)

fc : unit -> t3 (* "failure continuation" *)

So we can structure our code like this:

fun foo x sc fc =

tryFirstThing x sc (fn () =>

trySecondThing x sc (fn () =>

...

tryNthThing x sc fc)...))

Continuation Control Flow32



search

search : (’a -> bool) -> ’a tree -> (’a -> ’b) ->

(unit -> ’b) -> ’b

REQUIRES: p is total
ENSURES: search p T sc fc ∼= sc x where x is the first element of
T (the first in a preorder traversal of T) such that p x ∼= true . If there is no
such x, then search p T sc fc ∼= fc()

Continuation Control Flow33



0628.8 (search.sml)

10 fun search p Empty sc fc = fc ()

11 | search p (Node(L,x,R)) sc fc =

12 if p x then sc x else

13 search p L sc (fn () =>

14 search p R sc fc)

Continuation Control Flow34



Fancier search

0628.9 (search.sml)

18 datatype direction = LEFT | RIGHT

19

20 fun search ’ p Empty sc fc = fc ()

21 | search ’ p (Node(L,x,R)) sc fc =

22 if p x then sc [] else

23 search ’ p L

24 (fn res => sc(LEFT::res))

25 (fn () =>

26 search ’ p R

27 (fn res => sc(RIGHT::res))

28 fc)

Continuation Control Flow35



Summary

• Can give functions continuations to specify what to do with their result

• Can integrate continuation into the recursion of the function, obtaining the
“CPS version” of the function

• Recursive CPS functions are always tail recursive

• For searching functions that would normally return an option, we use a
“success” and “failure” continuation in writing the CPS version

Continuation Control Flow36



Next Time

• “Super CPS”

• CPS iteration

Continuation Control Flow37



Thank you!


	Continuations
	Continuation Control Flow

