

Tree Search & Sorting

15-150 M21

Lecture 0625 25 June 2021

Tree Search

0625.0 (polytreeDefn.sml)

```
datatype 'a tree =

Empty | Node of 'a tree * 'a * 'a tree
```

0625.1 (search.sml)

```
(* INVARIANT: For all values p : t pred, p is
total *)

type 'a pred = 'a -> bool
(* isEven : int pred *)
fun isEven x = x mod 2 = 0
```

search : 'a pred -> 'a tree -> 'a option

Tradeoff:

- Optimal work (best-case & worst-case), bad span
- Bad work (best-case), optimal work (worst-case), optimal span

Can't get optimal work and optimal span unless we know more about where in the tree to look!

Work-Optimized

0625.2 (search.sml)

ENSURES $\forall p, T, \text{ search } p \ T \cong \begin{cases} \texttt{SOME}(z) & \text{where } z \text{ is the top-leftmost element of } T \\ & \text{such that } p(z) \cong \texttt{true} \end{cases}$

Check Your Understanding

Verify that this function has O(n) work (in the worst case) when called on a balanced tree of size n.

Span-Optimized

0625.3 (search.sml)

```
19 fun search' p Empty = NONE
   \mid search' p (Node(L,x,R)) =
        if p(x) then SOME x
       else
          (case (search' p L, search' p R) of
23
               (SOME z, _) => SOME z
              |(_,SOME z)| => SOME z
              | => NONE)
```

Check Your Understanding Verify that this function has O(d) span when called on a tree of depth d. If we assume the tree is balanced, $d \approx \log n$.

1 Searching Sorted Trees

General idea:

We'll store a bunch of **entries** in a tree. The entries will be indexed by **keys** and each entry will contain a value. We'll use the keys to look up the entries. The entries tree will be **sorted** by key, allowing for fast lookup.

Recall: ord type-and-invariant

Invariant Any value cmp : t ord is a comparison function.

0625.4 (bst.sml)

type 'a ord = 'a * 'a -> order

Making some concrete choices

0625.5 (bst.sml)

```
type key = string
type 'a entry = key * 'a
val keyCmp : key ord = String.compare
```

0625.6 (bst.sml)

```
type 'a bst = 'a entry tree
```

Invariant If T : t bst, then T is sorted by key (according to keyCmp)

```
maxKey: 'a entry tree -> key option REQUIRES: true ENSURES: maxKey Empty \cong NONE and otherwise maxKey T \cong SOME(k), where k is the keyCmp-largest key of any entry in T.
```

0625.7 (bst.sml)

```
fun maxKey (Empty: 'a entry tree) = NONE
     maxKey (Node(L,(k,_),R)) : key option =
       let fun max (NONE, Y) = Y
             | \max (X, NONE) = X
24
             \mid \max (SOME k, SOME k') =
25
                     case keyCmp(k,k') of
26
                              GREATER => SOME k
                            => SOME k
       in
         max(SOME k, max(maxKey L, maxKey R))
30
       end
```

0625.8 (bst.sml)

```
fun minKey (Empty: 'a entry tree) = NONE
     minKey (Node(L,(k,_),R)) : key option =
      let fun min (NONE, Y) = Y
43
             | min (X, NONE) = X
             | min (SOME k, SOME k') =
45
                    case keyCmp(k,k') of
46
                             GREATER => SOME k'
                           => SOME k
       in
         min(SOME k, min(minKey L, minKey R))
       end
```

Sortedness

- Defn. A value T : t bst is sorted by key (according to keyCmp) if either <math>T = Empty or T = Node(L, (k, v), R) such that
 - L and R are sorted by key
 - k is greater than or equal to maxKey L, according to keyCmp
 - k is less than or equal to minKey R, according to keyCmp

Invariant If T : t bst, then T is sorted by key (according to keyCmp)

0625.6 (bst.sml)

type 'a bst = 'a entry tree

Claim If Node(L,x,R): t bst, then L : t bst and R : t bst

0625.9 (bst.sml)

```
val isEmpty = fn Empty => true | _ => false
val valOf : 'a option -> 'a = Option.valOf
fun leq(k,k') = keyCmp(k,k') \iff GREATER
fun geq(k,k') = keyCmp(k,k') \iff LESS
59 fun isSorted Empty = true
     isSorted (Node(L,(k,_),R)) =
      (isSorted L) andalso (isSorted R)
      andalso ( (isEmpty L)
62
                 orelse leq(valOf(maxKey L),k)
      andalso ( (isEmpty R)
65
                 orelse geq(valOf(minKey R),k)
66
```

Invariant If T : t bst, then T is sorted by key (according to keyCmp)

0625.10 (bst.sml)

```
fun asBST (T : 'a entry tree) : 'a bst =
let
val _ = (isSorted T)
orelse raise Fail "Not sorted"
in
T end
```

```
\label{eq:sortedSearch} \begin{array}{lll} \text{sortedSearch} & : & \text{key} & -> & \text{'a option} \\ \text{REQUIRES: true} & & & \\ \text{ENSURES:} & & & \\ & & & & \\ \text{sortedSearch} & \text{k'} & \text{T} \cong \left\{ \begin{array}{ll} \text{SOME}\left(v\right) & \text{for some entry} \left(k,v\right) & \text{in T s.t.} \\ & & & & \\ \text{keyCmp}\left(k',k\right) \cong \text{EQUAL} \\ \text{NONE} & & \text{if there is no such} \left(k,v\right) \end{array} \right.
```

0625.11 (bst.sml)

Notion of size: number *n* of nodes in T.

0.5 Assumption: keyCmp is O(1), and T is balanced.

$$W(0) = k$$

$$W(n) = k + W(n/2)$$

$$W(n) = \sum_{i=0}^{\log n} k \approx k \log n$$

5 W(n) is $O(\log n)$

No opportunities for parallelism, so recurrence for span is the same, hence S(n)also $O(\log n)$.

5-minute break

2 Sorting Trees

The merge sort algorithm for sorting a list:

- Split the list in half
- 2 Sort the two halves separately
- 3 Merge the sorted halves into a sorted whole

For trees: pretty much similar, except the tree is (almost) split into two halves already

```
ENSURES: insert e T evaluates to a BST T' containing all the entries of
 T, plus e
        0625.12 (bst.sml)
fun insert (x : 'a entry) (Empty : 'a bst) =
          Node (Empty, x, Empty)
110
   \mid insert (k',v') (Node(L,(k,v),R)) =
111
          case keyCmp(k',k) of
112
              GREATER =>
113
                Node(L,(k,v),insert (k',v') R)
114
            =>
115
                Node(insert (k',v') L,(k,v),R)
     Sorting Trees
```

insert : 'a entry -> 'a bst -> 'a bst

REQUIRES: true

```
splitAt : key -> 'a bst -> 'a bst * 'a bst
REQUIRES: true
ENSURES: splitAt k' T evaluates to (A,B) where A and B are BSTs
such that
```

- Each entry of T is in either A or B
- maxKey(A) is less than or equal to k'
- minKey(B) is greater that or equal to k'

0625.13 (bst.sml)

```
fun splitAt k' (Empty : 'a bst) = (Empty, Empty)
    \mid splitAt k' (Node(L,(k,v),R)) =
121
         case keyCmp(k',k) of
122
           LESS => let
123
                       val (t1,t2) = splitAt k' L
124
                     in
125
                       (t1, Node(t2, (k, v), R))
126
                     end
127
             =>
                     let
128
                       val (t1,t2) = splitAt k' R
129
                     in
130
                       (Node(L,(k,v),t1),t2)
131
                     and
```

0625.14 (bst.sml)

```
fun merge (Empty : 'a bst, T2 : 'a bst) = T2
      merge (Node(L1,(k,v),R1),T2) : 'a bst =
137
         let
138
            val (L2,R2) = splitAt k T2
139
         in
140
            Node (
141
                merge (L1,L2),
142
                (k,v),
143
                merge (R1,R2))
144
         end
145
```

0625.15 (bst.sml)

Check Your Understanding Verify that msort always produces a BST (a tree sorted by keys)

Check Your Understanding

Assuming T is balanced BST with n nodes, and keyCmp is O(1), verify that

- splitAt has O(log n) work and span
- insert has $O(\log n)$ work and span

merge Span Analysis

- O Notion of size: sum of sizes of T1 and T2
- 0.5 Assumption: keyCmp is O(1), and T1 , T2 are balanced BSTs of approximately the same size
 - 1

$$S(0) = k$$

$$S(n) = k + S(n/2) + k' \log n$$

4

$$S(n) = \sum_{i=0}^{\log n} (k + k' \log n) \approx k \log n + k' (\log n)^2 \approx k' (\log n)^2$$

S(n) is $O((\log n)^2)$ Sorting Trees

msort Span Analysis

- 0 Notion of size: number *n* of nodes in T.
- 0.5 Assumption: keyCmp is O(1), and T is balanced.
 - 1

$$S(0) = k$$

 $S(n) = k + S(n/2) + k'(\log n)^2 + k''(\log n)$
 $\approx S(n/2) + k'(\log n)^2$

4

$$S(n) = \sum_{i=0}^{\log n} k'(\log n)^2 \approx k'(\log n)^3$$

- S(n) is $O((\log n)^3)$
- **27**

Where's the lie?

Problem of Balancing

The lie in the previous analysis was this: msort doesn't always produce a balanced BST, violating the assumption we made when analyzing merge.

Solutions?

- Have a single "rebalance" function that turns a BST into a balanced BST, which we run on the output of msort
- Rewrite insert and merge to maintain balance as an invariant We'll take the latter approach, but not for a couple weeks.

Summary

- Can optimize tree search for either (best-case) work or span, but need to know "where to look" in tree to optimize both/further
- Sorting the tree (perhaps by keys) allows us to get better work and span
- Can implement merge sort for trees, with much better span
- But we need the trees to self-balance in order to actually achieve the stated bounds

Next Time

- Continuation accumulators
- Control flow continuations
- Continuation Passing Style

Lecture ended here on 25
June 2021. You're not expected to know anything past here.

3 Lazy Combinator Tree Search

Recall: span-optimized search

0625.3 (search.sml)

```
19 fun search' p Empty = NONE
   \mid search' p (Node(L,x,R)) =
        if p(x) then SOME x
       else
          (case (search' p L, search' p R) of
23
               (SOME z, _) => SOME z
              |(_,SOME z)| => SOME z
               | => NONE)
```

Can do with nice combinator

0625.16 (lazysearch.sml)

```
fun optOrelse (SOME x,_) = SOME x
 | optOrelse (NONE, Y) = Y
9 infixr optOrelse
 fun search (p:'a pred) Empty = NONE
 \mid search p (Node(L,x,R) : 'a tree) =
       if p(x) then SOME x else
       (search p L) optOrelse (search p R)
```

This is the span-optimized version because both arguments to optOrelse will get evaluated, in parallel (assuming adequate processors).

What about the work-optimized version?

0625.2 (search.sml)

```
fun search p Empty = NONE
look | search p (Node(L,x,R)) =
if p(x) then SOME x
else
(case search p L of
(SOME z) => SOME z
look | _ => search p R)
```

Recall SML is a **eager** language, and so will fully evaluate the arguments to a function before stepping into the function body.

So we can't define a "short-circuiting" optOrelse which only evaluates its second arg when its first argument is NONE.

SML is eager, unless...

we tell it not to be!

Recall the built-in type unit, which had only one value, ()

```
datatype unit = ()
```

A value of type unit -> t is of the form

```
fn () => e
```

which we think of "e, suspended", that is, e but tagged to not evaluate yet.

0625.17 (lazysearch.sml)

```
type 'a lazy = unit -> 'a
fun Eval (f:'a lazy):'a = f()
fun Suspend (x:'a):'a lazy = fn () => x
```

Claim Suspend is total

Claim If e:t is valuable, Eval(fn () => e) is valuable n particular, for all values v:t, Eval(Suspend v) is valuable.

```
val rec loop : string lazy =
  fn () => loop ()
```

0625.18 (lazysearch.sml)

```
fun elseTry (f : 'a option lazy,
               g : 'a option lazy)
25
          : 'a option lazy =
26
    fn () =>
    case f() of
       NONE => g()
     | X => X
31 infixr elseTry
```

0625.19 (lazysearch.sml)

```
fun Return (x:'a):'a option lazy =
Suspend(SOME x)
```

0625.20 (lazysearch.sml)

```
fun Search p Empty = Suspend NONE
l Search p (Node(L,x,R)) =
if p(x) then Return x else
Search p L elseTry Search p R
```

Thank you!