Tree Search & Sorting

15-150 M21

Lecture 0625
25 June 2021

Tree Search

0625.0 (polytreeDefn.sml)

.|datatype ’a tree =
s/ Empty | Node of ’a tree * ’a * ’a tree

1 Tree Search

0625.1 (search.sml)

o|(* INVARIANT: For all values p : t pred, p is
total =)
s|type ’a pred = ’a —-> bool
+|(x isEven : int pred *)
s|fun isEven x = x mod 2 = 0
search : ’a pred -> ’a tree -> ’a optilon
REQUIRES: true
ENSURES:
SOME (z) where z is the top-leftmost element of T
search p T= such that p(z) = true
NONE if there is no such z

Optimal work (best-case & worst-case), bad span
Bad work (best-case), optimal work (worst-case), optimal span

Can't get optimal work and optimal span unless we know more
about where in the tree to look!

0625.2 (search.sml)

o/fun search p Empty = NONE
0 | search p (Node(L,x,R)) =
11 if p(x) then SOME x
12 else
13 (case search p L of
14 (SOME Z) => SOME z
s | _ => search p R)
(SOME (z) where z is the top-leftmost element of T
Vp,T, search p T=(such that p(z) = true
| NONE if there is no such z

Verify that this function has O(n) work (in the worst case) when called on a
balanced tree of size n.

5 Tree Search

0625.3 (search.sml)

v|fun search’ p Empty = NONE

2 | search’ p (Node(L,x,R)) =

21 if p(x) then SOME x

2 else

23 (case (search’ p L, search’ p R) of
24 (SDME Z,_) => SOME =z

2 | (_,SOME z) => SOME =z

26 | _ => NONE)

G A CITACLGES NI Verify that this function has O(d) span when called
on a tree of depth d. If we assume the tree is balanced, d ~ log n.

Searching Sorted Trees

General idea:

Recall: ord type-and-invariant

NVEIEEINS Any value cmp : t ord is a comparison function.

0625.4 (bst.sml)

>/type ’a ord = ’a * ’a -> order |

8 Searching Sorted Trees

0625.5 (bst.sml)
o type key = string
o|type ’a entry = key * ’a
val keyCmp key ord = String.compare

0625.6 (bst.sml)

nw|type ’a bst = ’a entry tree I

If T : t bst, then T is sorted by key (according to keyCmp)

maxKey : ’a entry tree -> key option

REQUIRES: true

ENSURES: maxKey Empty = NONE and otherwise

maxKey T = SOME (k), where k is the keyCmp-largest key of any entry
in T.

21

22

23

24

25

26

27

28

29

30

31

0625.7 (bst.sml)

fun maxKey (Empty :’a entry tree) = NONE

maxKey (Node(L,(k,_),R)) : key option =
let fun max (NONE,Y) =Y
| max (X,NONE) = X
| max (SOME k,SOME k’) =
case keyCmp(k,k’) of
GREATER => SOME k
| _ => SOME Kk’
in

max (SOME k,max (maxKey L,maxKey R))
end

41

42

43

44

45

46

47

48

49

50

51

0625.8 (bst.sml)

fun minKey (Empty :’a entry tree) = NONE
| minKey (Node(L,(k,_),R)) : key option =
let fun min (NONE,Y) =Y
| min (X,NONE) = X
| min (SOME k,SOME k’) =
case keyCmp(k,k’) of
GREATER => SOME k'’
| _ => SOME k

in

min (SOME k,min(minKey L,minKey R))
end

Avalue T : t bst is sorted by key (according to keyCmp) if
either T = Empty or T=Node (L, (k,v) ,R) such that

e L and R are sorted by key

e Kk is greater than or equal to maxKey L, according to keyCmp

e Kk is less than or equal to minKey R, according to keyCmp

If T : t Dbst, then T is sorted by key (according to keyCmp)

0625.6 (bst.sml)

nw|type ’a bst = ’a entry tree

ElfNode(L,x,R) . t bst thenL : t bstandR : t bst

0625.9 (bst.sml)

s|val isEmpty = fn Empty => true | _ => false
s« val valOf : ’a option -> ’a = (Option.valOf
s|fun leq(k,k’) = keyCmp(k,k’) <> GREATER

| fun geq(k,k’) = keyCmp(k,k’) <> LESS

ss|fun 1isSorted Empty = true

60 | isSorted (Node(L,(k,_),R)) =

61 (isSorted L) andalso (isSorted R)

62 andalso ((isEmpty L)

63 orelse leq(valOf (maxKey L) ,k)
64)

65 andalso ((isEmpty R)

66 orelse geq(valOf (minKey R) ,k)

14 % :

If T : t Dbst, then T is sorted by key (according to keyCmp)

0625.10 (bst.sml)

w|fun asBST (T : ’a entry tree) : ’a bst =
79 let
80 val _ = (isSorted T)

81 orelse raise Fail "Not sorted"

sortedSearch k’ TZ= «

sortedSearch : key -> ’a bst -> ’a option
REQUIRES: true

ENSURES:

(SOME (v) for some entry (k,v) in T s.t.
keyCmp (k’ ,k) = EQUAL

| NONE if there is no such (k,v)
0625.11 (bst.sml)
wo|fun sortedSearch (Empty) : ’a option = NONE
101 | sortedSearch k’ (Node(L,(k,v),R) : ’a bst)=

102
103

104

16 \

case keyCmp (k’,

k) of

LESS => sortedSearch k’ (L : ’a bst)
| EQUAL => SOME (v)
| GREATER => sortedSearch k’ R

I] Notion of size: number n of nodes in T.
Assumption: keyCmp is O(1), and T is balanced.

W(0) = k
W(n) =k -+ W(n/2)

B W(n)is O(log n)

No opportunltles for parallelism, so recurrence for span is the same, hence S(n)
also O(log n).

b-minute break

Sorting Trees

The merge sort algorithm for sorting a list:
Split the list in half
Sort the two halves separately
Merge the sorted halves into a sorted whole

For trees: pretty much similar, except the tree is (almost) split into two halves
already

insert : ’a entry -> ’a bst -> ’a bst

REQUIRES: true
ENSURES: insert e T evaluatesto a BST T’ containing all the entries of

T, plus e

0625.12 (bst.sml)

oo | fun insert (x : ’a entry) (Empty : ’a bst) =
110 Node (Empty ,x, Empty)

11 | insert (k’,v’) (Node(L,(k,v),R)) =

11 case keyCmp(k’,k) of

113 GREATER =>

114 Node (L, (k,v),insert (k’,v’) R)

115 | =>

m Node (insert (k’,v’) L,(k,v),R)

splitAt : key -> ’a bst -> ’a bst * ’a bst

REQUIRES: true
ENSURES: splitAt k’ T evaluatesto (A,B) where A and B are BSTs

such that
e Each entry of T is in either A or B

e maxKey (A) is less than or equal to k’
e minKey (B) is greater that or equal to k"’

120

121

122

123

124

125

126

127

128

129

130

131

0625.13 (bst.sml)

fun splitAt k’ (Empty : ’a bst) = (Empty,Empty)
| splitAt k’ (Node(L,(k,v),R)) =
case keyCmp(k’,k) of
LESS => let
val (tl1,t2) = splitAt k’ L

in
(t1,Node(t2,(k,v),R))
end
_o=> let
val (t1,t2) = splitAt k’ R
1n

(Node(L,(k,v),tl1),t2)

anAd

0625.14 (bst.sml)

| fun merge (Empty : ’a bst,T2 : ’a bst) = T2
137 | merge (Node(L1,(k,v),R1),T2) : ’a bst =
138 let

139 val (LQ,RQ) = SplitAt k T2

140 in

141 Node (

142 merge (L1,L2),

143 (k,V),

144 merge (Rl,RQ))

0625.15 (bst.sml)

w | fun msort (Empty : ’a entry tree) = Empty
150 | msort (Node(L,x,R)) : ’a bst =

151 let

152 val (L’,R’) = (msort L, msort R)
153 in

154 insert x (merge (L’,R’))

155 end

G CITRIN S =S Verify that msort always produces a BST (a tree
sorted by keys)

Assuming T is balanced BST with n nodes, and keyCmp is O(1), verify that
e splitAt has O(logn) work and span
e insert has O(logn) work and span

I Notion of size: sum of sizes of T1 and T2
Assumption: keyCmp is O(1), and T1, T2 are balanced BSTs of
approximately the same size

5(0) =k
S(n) = k+S(n/2) + k' log n
log n
S(n) = Z(k + k' log n) ~ k log n + k'(log n)? ~ K'(log n)?
1=0

ﬂ?(n) is O((log n)?)

0] Notion of size: number n of nodes in T.
Assumption: keyCmp is O(1), and T is balanced.

5(0) =k
S(n) = k + S(n/2) + k'(log n)? + k" (log n)
~ 5(n/2) + k'(log n)?

log n

S5(n) = Z k'(log n)? =~ k'(log n)°
1=0

ﬂS(n) is O((log n)3)

Where's the lie?

The lie in the previous analysis was this: msort doesn't always produce a
balanced BST, violating the assumption we made when analyzing merge.

Solutions?
e Have a single “rebalance” function that turns a BST into a balanced BST,
which we run on the output of msort

e Rewrite insert and merge to maintain balance as an invariant
We'll take the latter approach, but not for a couple weeks.

e Can optimize tree search for either (best-case) work or span, but need to
know “where to look” in tree to optimize both/further

e Sorting the tree (perhaps by keys) allows us to get better work and span
e Can implement merge sort for trees, with much better span

e But we need the trees to self-balance in order to actually achieve the stated
bounds

e Continuation accumulators
e Control flow continuations
e Continuation Passing Style

31

Sorting Trees

Lecture ended here on 25
June 2021. You're not

expected to know anything
past here.

Lazy Combinator Tree Search

Recall: span-optimized search

0625.3 (search.sml)

v|fun search’ p Empty = NONE

20 | search’ p (Node(L,x,R)) =

21 if p(x) then SOME x

2 else

23 (case (search’ p L, search’ p R) of
24 (SOME z,_) => SOME =z

2 | (_,SOME z) => SOME =z

26 | =2 NONE)

33 Lazy Combinator Tree Search

0625.16 (lazysearch.sml)

/[fun optOrelse (SOME x,_) = SOME x
: | optOrelse (NONE,Y) =Y
oinfixr optlOrelse

10
i fun search (p:’a pred) Empty = NONE

2 | search p (Node(L,x,R) : ’a tree) =

13 if p(x) then SOME x else

(search p L) optOrelse (search p R)

14

This is the span-optimized version because both arguments to optOrelse will
get evaluated, in parallel (assuming adequate processors).

What about the work-optimized version?

0625.2 (search.sml)

o|fun search p Empty = NONE

0 | search p (Node(L,x,R)) =

11 if p(x) then SOME x

12 else

13 (case search p L of

14 (SOME Z) => SOME z
" | _ => search p R)

35 Lazy Combinator Tree Search

Recall SML is a eager language, and so will fully evaluate the
arguments to a function before stepping into the function body:.

So we can't define a “short-circuiting” optOrelse which only
evaluates its second arg when its first argument is NONE.

we tell it not to bel

Recall the built-in type unit, which had only one value, ()

datatype unit = () I

A value of type unit -> 1t is of the form

fn () => e I

which we think of “e, suspended”, that is, e but tagged to not evaluate yet.

0625.17 (lazysearch.sml)

s|type ’a lazy = unit -> ’a
o/ fun Eval (f:’a lazy):’a = f()
»|fun Suspend (x:’a):’a lazy = fn () => x

Suspend is total

If e:t isvaluable, Eval (fn () => e) is valuableln particular, for
all values v:t, Eval (Suspend v) is valuable.

val rec loop : string lazy =
fn () => loop ()

elseTry : ’a option lazy * ’a option lazy -> ’a
option lazy

REQUIRES: true

ENSURES:

~

Eval f if Eval f isnot NONE
Eval (elseTry(f,g))

Eval g if Eval (f) = NONE

39

Lazy Combinator Tree Search

0625.18 (lazysearch.sml)

«|fun elseTry (f : ’a option lazy,
25 g : ’a option lazy)
26 :’a option lazy =
27 fn () =>
28 case f() of
2 NONE => g()
30 | X => X
infixr elseTry

Search : ’a pred -> ’a tree -> ’a option lazy

REQUIRES: true

ENSURES:

(SOME (z) where z is the top-leftmost element of T
Search p T () = < such that p(z) = true

| NONE if there is no such z

0625.19 (lazysearch.sml)

»s|fun Return (x:’a):’a option lazy =
| Suspend (SOME x)

0625.20 (lazysearch.sml)

w|fun Search p Empty = Suspend NONE

a1 | Search p (Node(L,x,R)) =

22 if p(x) then Return x else
Search p L elseTry Search p R

43

Thank you!

	Tree Search
	Searching Sorted Trees
	Sorting Trees
	Lazy Combinator Tree Search

