

Theory of Higher Order Functions

Higher-Order Totality, Staging, & Combinators

15-150 M21

Lecture 0623 23 June 2021

0623.0 (more-hofs.sml)

Theory of Higher Order Functions

Example Usage

0623.1 (more-hofs.sml)

 $_{10}$ val isEven = fn x => x mod 2 = 0

0623.2 (more-hofs.sml)

17	val	[]	=	filter	isEven	[]
----	-----	----	---	--------	--------	----

¹⁸ val [] = filter isEven [3,5,7]

```
20 val [] = filter (Fn.const false) ["a","b","c"]
```

```
21 val ["a","b","c"] =
```

```
filter (Fn.const true) ["a","b","c"]
```

```
mappartiali : (int * 'a -> 'b option) -> 'a list
-> 'b list
REQUIRES: g(i,x) is valuable for i \ge 0
ENSURES: mappartiali g L evaluates to the list of all those z such
that g(i,x) \Longrightarrow SOME(z), where i is the index of x in L.
```

0623.4 (more-hofs.sml)

```
_{38} fun half (_,x) = if isEven x
                 then SOME(x div 2)
39
                 else NONE
40
 fun convert (i,x) = if i<x</pre>
41
                then SOME(Int.toString x)
42
                 else NONE
43
_{44} val [1,2,3] =
   mappartiali half [1,2,3,4,5,6,7]
45
 val ["5","9"] =
46
   mappartiali convert [5,0,1,9,\sim 6,4]
47
```

Live Coding: mappartiali

Mappartiali

6

0623.3 (more-hofs.sml)

```
_{26} fun mappartiali g [] = []
   mappartiali g (x::xs) =
27
        let
28
           fun g' (i,x') = g(i+1,x')
29
        in
30
           (case g(0,x) of
31
             (SOME y) => y::mappartiali g' xs
32
           | _ => mappartiali g' xs)
33
        end
34
```

0 Evaluation and Equivalence of HOFs

```
Thm. 1 map is total
Proof. For any value f : t1 -> t2,
            map f \Longrightarrow fn [] => [] | x::xs => ...
Thm. 2 filter is total
Proof. For any value p : t \rightarrow bool,
          filter p \Longrightarrow fn [] => [] | x::xs => ...
```

Higher-Order Totality?

A more interesting claim:

Thm. 3 For any types t1, t2 and any total f : t1 -> t2, map f is total.

Proof. By structural induction on L : t1 list
BC L=[]

$$\begin{array}{l} \text{map f } [] \Longrightarrow [] \\ \hline \text{IS L}=x::xs \text{ for some } x:t1 \text{ and some } xs:t1 \text{ list} \\ \hline \text{IH} \text{ map f } xs \hookrightarrow vs \text{ for some value } vs:t2 \text{ list} \end{array}$$

map f (x::xs)

$$\implies$$
 (f x)::map f xs
 \implies (f x)::vs
 \implies v::vs

(defn map)

(f is total)

Evaluation and Equivalence of HOFs

Theorem:

For all types t1,t2 and all total values f : t1 -> t2, len o (map f) \cong len

square : int -> int
REQUIRES: true
ENSURES: square $x \cong x * x$, but it takes a really long time

0623.5 (staging.sml)	0623.6 (staging.sml)		
fun ex1 x y =	$_{33}$ fun ex2 x =		
let	34 let		
val xsq = square x	val xsq = square x		
28 in	36 in		
x s q + y	$\frac{fn}{y} = xsq + y$		
end	38 end		

Staging

Staging is delibrately structuring a curried function to perform computations once certain arguments are obtained.

```
fun foo x =
  let
    val v1 = horribleComputation x
  in
    (fn y =>
      let
        val v2 = otherHorribleComp(v1,y)
      in
        fn z => z + v1 + v2
      end
   Staging
```

2 Runtime Analysis of HOFs

foldr : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b REQUIRES: g is total ENSURES: foldr g acc $[x1, ..., xn] \cong g(x1, g(..., g(xn, acc)...))$

0623.7 (more-hofs.sml)

55	fun	foldr g acc [] = acc
56		<pre>foldr g acc (x::xs) = g(x,foldr g acc xs)</pre>
57		
58	val	sum = foldr (op +) 0
59	val	prod = foldr (op *) 1
60	val	<pre>strConcat = foldr (op ^) ""</pre>

Runtime Analysis of HOFs

Resource: Origami

https://www.cs.cmu.edu/~15150/resources/handouts/ origami/origami.pdf https://www.cs.cmu.edu/~15150/resources/handouts/ origami/origami.sml

- \implies "OLLEH!"
- \implies foldl (op^) "OLLEH!" []
- \implies foldl (op^) "LLEH!" ["0"]
- \implies foldl (op^) "LEH!" ["L","O"]
- \implies foldl (op^) "EH!" ["L","L","O"]
- ⇒ foldl (op^) "H!" ["E","L","L","O"]
- foldl (op^) "!" ["H","E","L","L","O"]

\implies "HELLO"

- $\implies "H"^("E"^("L"^("L"^("O"^""))))$
- > "H"^("E"^("L"^("L"^(foldr (op^) "" ["0"]))))

 > "H"^("E"^("L"^("L"^("0"^(foldr (op^) "" [])))))
- $\implies "H"^{("E"^{(IOIdr (Op))} ~ un ["L", "L", "U"]))$
- ⇒ "H"^(foldr (op^) "" ["E", "L", "L", "O"]) ⇒ "H"^("E"^(foldr (op^) "" ["L", "L", "O"]))
- \implies foldr (op^) "" ["H","E","L","L","O"]
- (fn L => foldr (op^) "" L) ["H","E","L","L","O"]

strConcat Analysis

5-minute break

Combinators

In mathematics and computer science, a **binary operation** is a function* (often written infixed) which takes two "things" of the same "kind" and "combines" them into another thing of that "kind".

Mathematical Examples:

- \bullet + is a binary operation on complex numbers
- $\bullet \ \cup$ is a binary operation on sets
- \bullet \times is a binary operation on 3-dimensional vectors

SML examples

- div is a (partial) binary operation on ints
- "Tupling" or "pairing" is a binary operation on expressions: if e1 and e2 are expressions, (e1,e2) is an expression
- Composition is a binary operation on functions

(op o) : ('b -> 'c) * ('a -> 'b) ->('a -> 'c)
REQUIRES: true
ENSURES: (g o f)
$$\cong$$
 h such that h(x) \cong g(f(x))

0623.8 (combinators.sml)

4	fun	zip([],_)=[]
5		zip(_,[])=[]
6		zip(x::xs,y::ys) = (x,y) :: zip(xs,ys)
7	val	<pre>dotProd = (foldr op+ 0) o (map op*) o zip</pre>
8	(*	(1*4) + (2*5) + (3*6) *)
9	val	32 = dotProd([1,2,3],[4,5,6])
	wal	32 = dotProd([1,2,3],[4,5,6,7])
1	9 c	Combinators

Addition is a binary operation on **ints**:

• Associativity:

Composition is a binary operation on functions (constrained by types)

• Associativity:

ho(gof)
$$\cong$$
 (hog) of

• Identity:

20

Fn.id o f \cong f \cong f o Fn.id

The algebraic study of the composition operation is the mathematical discipline of *category theory*.

Combinators

0623.9 (combinators.sml)

```
14 infix &&& ***
_{15} fun f & & & g = fn x => (f x, g x)
_{16} fun f *** g = fn (x,y) => (f x,g y)
17 fun listToString toStr L =
   _____ ∩__ ^
18
   (String.concatWith "," (map toStr L)) ^
19
    ייךיי
20
21 val strAndLen =
    (listToString Int.toString) &&& List.length
22
23 val format =
   (fn (s,1) =>
24
    "The list " ^ s ^ " has length " ^ (Int.toString l)
25
   ) o strAndLen
26
```

21 Combinators

Function Application Pipe

0623.10 (combinators.sml)

33 infix |>
34 fun x |> f = f x

0623.11 (combinators.sml)

38	<pre>fun dotProd ' (L1,L2)</pre>	=		
39	(L1,L2)	(*	int list * int list	*)
40	> zip	(*	(int * int) list	*)
41	> map <mark>op</mark> *	(*	int list	*)
42	<pre> > foldr (op+) 0</pre>	(*	int	*)
43				
44	val $32 = dotProd'$ ([2	1,2	,3],[4,5,6])	

Combinators

Verify that this implementation of mappartiali matches our earlier definition

		0623.12 (combinators.sml)
48	fun	isSome NONE = false
49		isSome _ = true
50	fun	valOf NONE = raise Option
51		valOf(SOME x) = x
52	fun	mappartial f L =
53	L	<pre> > map f > filter isSome > map valOf</pre>
54	fun	mappartiali f L =
55	L	<pre> > mapi f > filter isSome > map valOf</pre>

- We can write more complex versions of familiar HOFs
- With standard HOFs like map or filter, we're often interested in a higher-order notion of totality
- In some circumstances, we want to be careful about how the computation is staged in curried functions of several arguments
- We can analyze the runtime of HOFs just like with other functions, but often must make assumptions about the runtime of the functions given as arguments
- Functions have their own "algebra" of combinators

- Tree search and options
- Tree balancing
- Tree sorting

Thank you!