
Theory of Higher Order
Functions

Higher-Order Totality, Staging,
& Combinators

15-150 M21

Lecture 0623
23 June 2021

List filtration system

0623.0 (more-hofs.sml)

2 fun filter p [] = []

3 | filter p (x::xs) =

4 if p(x)

5 then x:: filter p xs

6 else filter p xs

Theory of Higher Order Functions1

Example Usage

0623.1 (more-hofs.sml)

10 val isEven = fn x => x mod 2 = 0

0623.2 (more-hofs.sml)

17 val [] = filter isEven []

18 val [] = filter isEven [3,5,7]

19 val [2,4] = filter isEven [2,3,4]

20 val [] = filter (Fn.const false) ["a","b","c"]

21 val ["a","b","c"] =

22 filter (Fn.const true) ["a","b","c"]

Theory of Higher Order Functions2

Mappartiali

mappartiali : (int * ’a -> ’b option) -> ’a list

-> ’b list

REQUIRES: g(i,x) is valuable for i ≥ 0

ENSURES: mappartiali g L evaluates to the list of all those z such
that g(i,x) =⇒ SOME(z), where i is the index of x in L.

Theory of Higher Order Functions3

0623.4 (more-hofs.sml)

38 fun half (_,x) = if isEven x

39 then SOME(x div 2)

40 else NONE

41 fun convert (i,x) = if i<x

42 then SOME(Int.toString x)

43 else NONE

44 val [1,2,3] =

45 mappartiali half [1,2,3,4,5,6,7]

46 val ["5","9"] =

47 mappartiali convert [5,0,1,9,∼6,4]

Theory of Higher Order Functions4

Live Coding:
mappartiali

Mappartiali

0623.3 (more-hofs.sml)

26 fun mappartiali g [] = []

27 | mappartiali g (x::xs) =

28 let

29 fun g’ (i,x’) = g(i+1,x’)

30 in

31 (case g(0,x) of

32 (SOME y) => y:: mappartiali g’ xs

33 | _ => mappartiali g’ xs)

34 end

Theory of Higher Order Functions6

0 Evaluation and Equivalence of
HOFs

HOFs are trivially total

Thm. 1 map is total
Proof. For any value f : t1 -> t2,

map f =⇒ fn [] => [] | x::xs => ...

�
Thm. 2 filter is total
Proof. For any value p : t -> bool ,

filter p =⇒ fn [] => [] | x::xs => ...

�

Evaluation and Equivalence of HOFs7

Higher-Order Totality?
A more interesting claim:
Thm. 3 For any types t1 ,t2 and any total f : t1 -> t2, map f is

total.
Proof. By structural induction on L : t1 list

BC L=[]

map f [] =⇒ []

IS L=x::xs for some x:t1 and some xs:t1 list

IH map f xs ↪→ vs for some value vs:t2 list

map f (x::xs)

=⇒ (f x)::map f xs (defn map)

=⇒ (f x)::vs IH

=⇒ v::vs (f is total)

for some value v : t2.Evaluation and Equivalence of HOFs8

Theorem:
For all types t1 ,t2 and all total values f : t1 -> t2,

len o (map f) ∼= len

1 Staging

What’s the difference?

square : int -> int

REQUIRES: true
ENSURES: square x ∼= x*x, but it takes a really long time

0623.5 (staging.sml)

25 fun ex1 x y =

26 let

27 val xsq = square x

28 in

29 xsq + y

30 end

0623.6 (staging.sml)

33 fun ex2 x =

34 let

35 val xsq = square x

36 in

37 fn y => xsq + y

38 end

Staging10

Staging

Staging is delibrately structuring a curried function to perform computations
once certain arguments are obtained.
fun foo x =

let

val v1 = horribleComputation x

in

(fn y =>

let

val v2 = otherHorribleComp(v1,y)

in

fn z => z + v1 + v2

end

)

end
Staging11

2 Runtime Analysis of HOFs

Combine all the elements of a list

foldr : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

REQUIRES: g is total
ENSURES:
foldr g acc [x1 ,...,xn] ∼= g(x1 ,g(...,g(xn ,acc)...))

0623.7 (more-hofs.sml)

55 fun foldr g acc [] = acc

56 | foldr g acc (x::xs) = g(x,foldr g acc xs)

57

58 val sum = foldr (op +) 0

59 val prod = foldr (op *) 1

60 val strConcat = foldr (op ^) ""

Runtime Analysis of HOFs12

Resource: Origami
https://www.cs.cmu.edu/~15150/resources/handouts/

origami/origami.pdf

https://www.cs.cmu.edu/~15150/resources/handouts/

origami/origami.sml

https://www.cs.cmu.edu/~15150/resources/handouts/origami/origami.pdf
https://www.cs.cmu.edu/~15150/resources/handouts/origami/origami.pdf
https://www.cs.cmu.edu/~15150/resources/handouts/origami/origami.sml
https://www.cs.cmu.edu/~15150/resources/handouts/origami/origami.sml

foldl (op^) "!" ["H","E","L","L","O"]

=⇒ foldl (op^) "H!" ["E","L","L","O"]

=⇒ foldl (op^) "EH!" ["L","L","O"]

=⇒ foldl (op^) "LEH!" ["L","O"]

=⇒ foldl (op^) "LLEH!" ["O"]

=⇒ foldl (op^) "OLLEH!" []

=⇒ "OLLEH!"

Runtime Analysis of HOFs14

strConcat trace

(fn L => foldr (op^) "" L) ["H","E","L","L","O"]

=⇒ foldr (op^) "" ["H","E","L","L","O"]

=⇒ "H"^(foldr (op^) "" ["E","L","L","O"])

=⇒ "H"^("E"^(foldr (op^) "" ["L","L","O"]))

=⇒ "H"^("E"^("L"^(foldr (op^) "" ["L","O"])))

=⇒ "H"^("E"^("L"^("L"^(foldr (op^) "" ["O"]))))

=⇒ "H"^("E"^("L"^("L"^("O"^(foldr (op^) "" [])))))

=⇒ "H"^("E"^("L"^("L"^("O"^""))))

=⇒ "HELLO"

Runtime Analysis of HOFs15

strConcat Analysis

5-minute break

3 Combinators

Binary Operations

In mathematics and computer science, a binary operation is a function* (often
written infixed) which takes two “things” of the same “kind” and “combines”
them into another thing of that “kind”.
Mathematical Examples:

• + is a binary operation on complex numbers

• ∪ is a binary operation on sets

• × is a binary operation on 3-dimensional vectors

SML examples
• div is a (partial) binary operation on ints

• “Tupling” or “pairing” is a binary operation on expressions: if e1 and e2

are expressions, (e1 ,e2) is an expression

• Composition is a binary operation on functions

Combinators18

Stick two functions together

(op o) : (’b -> ’c) * (’a -> ’b) ->(’a -> ’c)

REQUIRES: true
ENSURES: (g o f) ∼= h such that h(x) ∼= g(f(x))

0623.8 (combinators.sml)

4 fun zip([],_)=[]

5 | zip(_,[]) =[]

6 | zip(x::xs ,y::ys) = (x,y) :: zip(xs ,ys)

7 val dotProd = (foldr op+ 0) o (map op*) o zip

8 (* (1*4) + (2*5) + (3*6) *)

9 val 32 = dotProd ([1,2,3],[4,5,6])

10 val 32 = dotProd ([1,2,3],[4,5,6,7])
Combinators19

Addition is a binary operation on ints:

• Associativity:

x + (y + z) ∼= (x + y) + z• Identity:
0 + x ∼= x ∼= x + 0

Composition is a binary operation on functions (constrained by types)

• Associativity:

h o (g o f) ∼= (h o g) o f

• Identity:
Fn.id o f ∼= f ∼= f o Fn.id

The algebraic study of the composition operation is the mathematical discipline
of category theory.

Combinators20

0623.9 (combinators.sml)

14 infix &&& ***

15 fun f &&& g = fn x => (f x, g x)

16 fun f *** g = fn (x,y) => (f x,g y)

17 fun listToString toStr L =

18 "[" ^

19 (String.concatWith "," (map toStr L)) ^

20 "]"

21 val strAndLen =

22 (listToString Int.toString) &&& List.length

23 val format =

24 (fn (s,l) =>

25 "The list " ^ s ^ " has length " ^ (Int.toString l)

26) o strAndLen

Combinators21

Function Application Pipe

0623.10 (combinators.sml)

33 infix |>

34 fun x |> f = f x

0623.11 (combinators.sml)

38 fun dotProd ’ (L1,L2) =

39 (L1 ,L2) (* int list * int list *)

40 |> zip (* (int * int) list *)

41 |> map op* (* int list *)

42 |> foldr (op+) 0 (* int *)

43

44 val 32 = dotProd ’ ([1,2,3],[4,5,6])

Combinators22

Check Your Understanding

Verify that this implementation of mappartiali matches our earlier
definition

0623.12 (combinators.sml)

48 fun isSome NONE = false

49 | isSome _ = true

50 fun valOf NONE = raise Option

51 | valOf (SOME x) = x

52 fun mappartial f L =

53 L |> map f |> filter isSome |> map valOf

54 fun mappartiali f L =

55 L |> mapi f |> filter isSome |> map valOf

Combinators23

Summary

• We can write more complex versions of familiar HOFs

• With standard HOFs like map or filter , we’re often interested in a
higher-order notion of totality

• In some circumstances, we want to be careful about how the computation is
staged in curried functions of several arguments

• We can analyze the runtime of HOFs just like with other functions, but often
must make assumptions about the runtime of the functions given as
arguments

• Functions have their own “algebra” of combinators

Combinators24

Next Time

• Tree search and options

• Tree balancing

• Tree sorting

Combinators25

Thank you!

	Evaluation and Equivalence of HOFs
	Staging
	Runtime Analysis of HOFs
	Combinators

