
Asymptotic Analysis &
Sorting

The Fast and the Recursiveness

15-150 M21

Lecture 0609
09 June 2021

0 Sequential Runtime Analysis

Today’s slogan

Think big (and think long-term)

Big-O as a vocabulary for expressing asymptotic runtime

f is O(1) - doubling the input size to f doesn’t change the runtime

f is O(n) - doubling the input size to f doubles the runtime

f is O(log n) - doubling the input size to f adds a constant to the runtime

f is O(n2) - doubling the input size to f quadruples the runtime

Sequential Runtime Analysis2

Check Your Understanding

What Big-O class is pow in?

A O(1)

B O(log n)

C O(n)

D O(n2)

Sequential Runtime Analysis3

Asymptotic Standpoint solves a few issues. . .

• Internal representations?

6+6 =⇒?k 12 (for some constant k)

• Hardware dependence: want algorithm analysis to be the same for both our
computers, even if yours is twice as fast as mine. (constant coefficients are
“consumed” by the Big-O)

• For small inputs, the costs of initiating the process and storing variables is
much higher relative to the costs of actual computation (assuming
asymptotically huge inputs, so not a problem)

Sequential Runtime Analysis4

Want: General method to
determine which Big-O class f is

in

The Tree Method

0 How you’re quantifying input size

1 Recurrence

2 Description of work tree

3 Measurements of work tree (height, and width at each level)

4 Summation

5 Big-O

Sequential Runtime Analysis6

Worked example: @ analysis

0609.0 (work.sml)

1 fun [] @ L2 = L2

2 | (x::xs) @ L2 = x::(xs@L2)

0 Measure of input size: length of the first list

1 Recurrence

Sequential Runtime Analysis8

Big Idea
Abstractly define W : N→ N such that evaluating f(x)

for an input of size n takes approximately W (n) steps,
then classify the Big-O complexity of W

0609.0 (work.sml)

1 fun [] @ L2 = L2

2 | (x::xs) @ L2 = x::(xs@L2)

0 Measure of input size: length of the first list

1 Recurrence:

W (0) = k0

W (n) = k1 + W (n − 1)

Sequential Runtime Analysis10

1 Recurrence:

W (0) = k0

W (n) = k1 + W (n − 1)

2 Work Tree

Sequential Runtime Analysis11

Sequential Runtime Analysis12

3 Measurements
Height: n
Work on the i -th level: k1

4 Sum:

W (n) = k0 +
n−1∑
i=0

k1

≈ nk1

5 Big O:
W (n) is O(n)

Sequential Runtime Analysis13

0609.0 (work.sml)

1 (* op@ : t list * t list -> t list

2 * REQUIRES: true

3 * ENSURES: L1@L2 is the list consisting

4 * of the elements of L1 (in order),

5 * followed by the elements of L2

6 * (in order)

7 * WORK: O(n), where n = |L1|

8 *)

9 fun [] @ L2 = L2

10 | (x::xs) @ L2 = x::(xs@L2)

Sequential Runtime Analysis14

Worked example: pow analysis

Built-in arithmetic is assumed to be constant-time

0609.1 (work.sml)

1 (* O(1) *)

2 fun square (x:int):int = x * x

3

4 (* O(1) *)

5 fun even (n : int):bool = (n mod 2)=0

Sequential Runtime Analysis16

New pow

0609.2 (work.sml)

1 fun pow 0 = 1

2 | pow n =

3 case (even n) of

4 true => square(pow(n div 2))

5 | false => 2* square(pow(n div 2))

Sequential Runtime Analysis17

New pow

0609.2 (work.sml)

1 (* pow : int -> int

2 * REQUIRES: n>=0

3 * ENSURES: pow(n) == exp(n)

4 * WORK: O(log n)

5 *)

6 fun pow 0 = 1

7 | pow n =

8 case (even n) of

9 true => square(pow(n div 2))

10 | false => 2* square(pow(n div 2))

Sequential Runtime Analysis18

Check Your Understanding

Determine the Big-O complexity of exp

Sequential Runtime Analysis19

Worked example: rev analysis

0609.3 (work.sml)

1 (* rev : t list -> t list

2 * REQUIRES: true

3 * ENSURES: (rev L) == L’, where L’ is the list

4 * containing the same elements as L,

5 * but in the opposite order

6 * WORK: O(n^2), where n = |L|

7 *)

8 fun rev [] = []

9 | rev (x::xs) = (rev xs)@[x]

Sequential Runtime Analysis21

Check Your Understanding

Determine the Big-O complexity of trev

Sequential Runtime Analysis22

5-minute break

1 Sorting

Order

SML has a built-in type called order . It has three constructors/values:

LESS EQUAL GREATER

Int.compare : int * int -> order

String.compare : string * string -> order

Sorting24

fun quadrantV1 (m:int ,n:int):string =

if m=0 orelse n=0

then "boundary"

else if m>0

then if n>0

then "I"

else "IV"

else if n<0

then "II"

else "III"

Sorting25

fun quadrant (m:int ,n:int):string =

case (Int.compare(m,0),Int.compare(n,0)) of

(EQUAL , _) => "boundary"

| (_ , EQUAL) => "boundary"

| (GREATER ,GREATER) => "I"

| (LESS ,GREATER) => "II"

| (LESS ,LESS) => "III"

| (GREATER ,LESS) => "IV"

Sorting26

Sorting

Sorting is a classic algorithmic problem in computer science: finding the fastest
way to put all the elements of a list in order.

A value [x_1 ,...,x_n] : int list is sorted if for each
i = 1, . . . , n − 1, Int.compare(x_i ,x_(i+1)) 6∼= GREATER .

Or, recursively: a value v:int list is sorted if either v=[] or v=[x] for
some x, or v=x::x’::xs where Int.compare(x,x’) 6∼= GREATER

and x’::xs is sorted.

Sorting27

Spec

0609.4 (sorting.sml)

1 fun isSorted ([]: int list):bool = true

2 | isSorted [x] = true

3 | isSorted (x::x’::xs) =

4 (x<=x’) andalso isSorted(x’::xs)

sort : int list -> int list

REQUIRES: true
ENSURES: sort(L) evaluates to a sorted permutation of L

A “permutation” of L is just a list that contains the same elements the same number of times as

L, just in a possibly different order. So [1,1,2,3] is a permutation of [3,1,2,1] but not

of [3,2,1].

Sorting28

Sorting Algorithms

There are many sorting algorithms: insertion sort, quick sort, merge sort, bubble
sort, . . .

We’ll be focusing on merge sort, which consists of the following three steps:

1 Split the input list in half

2 Sort each half

3 merge the sorted halves together to obtain a sorted whole

Sorting29

Specs

split : int list -> int list * int list

REQUIRES: true
ENSURES: split L evaluates to (A,B) where A and B differ in length by
at most one, and A@B is a permutation of L

merge : int list * int list -> int list

REQUIRES: A and B are sorted
ENSURES: merge(A,B) evaluates to a sorted permutation of A@B

msort : int list -> int list

REQUIRES: true
ENSURES: msort(L) evaluates to a sorted permutation of L

Sorting30

split : int list -> int list * int list

REQUIRES: true
ENSURES: split L evaluates to (A,B) where A and B differ in length by
at most one, and A@B is a permutation of L

0609.5 (sorting.sml)

1 fun split ([]):int list * int list = ([] ,[])

2 | split ([x] : int list) = ([x],[])

3 | split (x::x’::xs) =

4 let

5 val (A,B) = split xs

6 in

7 (x::A,x’::B)

8 end
Sorting31

merge : int list * int list -> int list

REQUIRES: A and B are sorted
ENSURES: merge(A,B) evaluates to a sorted permutation of A@B

0609.6 (sorting.sml)

1 fun merge (L1:int list ,[]: int list) = L1

2 | merge ([],L2) = L2

3 | merge (x::xs ,y::ys) =

4 (case Int.compare(x,y) of

5 GREATER => y:: merge(x::xs,ys)

6 | _ => x::merge(xs,y::ys))

Sorting32

msort : int list -> int list

REQUIRES: true
ENSURES: msort(L) evaluates to a sorted permutation of L

0609.7 (sorting.sml)

1 fun msort ([]: int list):int list = []

2 | msort [x] = [x]

3 | msort L =

4 let

5 val (A,B) = split L

6 in

7 merge(msort A,msort B)

8 end

Sorting33

Analysis

0609.5 (sorting.sml)

1 fun split ([]):int list * int list = ([] ,[])

2 | split ([x] : int list) = ([x],[])

3 | split (x::x’::xs) =

4 let

5 val (A,B) = split xs

6 in

7 (x::A,x’::B)

8 end

0 Measure of size: length of input list

1-4 . . .

5 Wsplit(n) is O(n)

Sorting35

0609.6 (sorting.sml)

1 fun merge (L1:int list ,[]: int list) = L1

2 | merge ([],L2) = L2

3 | merge (x::xs ,y::ys) =

4 (case Int.compare(x,y) of

5 GREATER => y:: merge(x::xs,ys)

6 | _ => x::merge(xs,y::ys))

0 Measure of size: sum of lengths of input lists

1-4 . . .

5 Wmerge(n) is O(n)

Sorting36

0609.7 (sorting.sml)

1 fun msort ([]: int list):int list = []

2 | msort [x] = [x]

3 | msort L =

4 let

5 val (A,B) = split L

6 in

7 merge(msort A,msort B)

8 end

Sorting37

0 Measure of size: length of input list

1

Wmsort(0) = k0

Wmsort(1) = k1

Wmsort(n) ≤ k2 + k3n + Wmsort(n/2) + Wmsort(n/2) + k4n

≈ 2Wmsort(n/2) + kn

2 . . .

3 Height: log n, work on level i : k(n − i)

4 . . .

5 Wmsort(n) is O(n log n)

Sorting38

Summary

• We can make use of the formalism of recurrences and asymptotic complexity
to precisely articulate the runtime of recursive functional
functions/algorithms

• The Tree Method allows us to determine the asymptotic complexity of
recursive functions.

• We can implement and analyze sorting algorithms using the tools we’ve
developed so far

Sorting39

Next Time

• Parallelism & Span

• Trees

Sorting40

Thank you!

	Sequential Runtime Analysis
	Sorting

