Structural Induction & Asymptotic Analysis

Structural engineering

15-150 M21

Lecture 0607 07 June 2021

Struct Induct

SML allows us to declare type aliases

type fivetuple = int $*$ int $*$ int $*$ int $*$ int

We can use this to help define types with invariants

 $(*$ INVARIANT: for all n:nat, n>=0 $*)$ type nat = int

```
(* fact : nat -> nat
* REQUIRES : true
 * ENSURES : fact n == n!
 *)
fun fact 0 = 1| fact (n:nat):nat = n * fact(n-1)
```
In reality, nat is just int , so all the constructors of type int are constructors of type nat. But we pretend that nat is given by two constructors:

 \bullet 0

• Successor: if n : nat, then n +1: nat

- Pretending that all nats are constructed from zero and successor matches our recursion & induction principle.
	- **Recursion**: To define $f : \text{nat } \rightarrow t$, must provide $f(0)$ and $f(n)$, using the value of $f(n-1)$.
	- Induction: To prove $P(n)$ for all $n : nat$, must prove $P(0)$ and $P(n)$, using the assumption of $P(n-1)$

Key Point

The recursion and induction principles for a (recursive) type exactly match the constructors of that type

Recall that the type t list has two constructors:

- [] : t list
- \bullet $(x :: xs)$: t list if $x : t$ and xs : t list
- **Recursion Principle**: To define $f : t1$ list \rightarrow t2, must provide $f([])$: t2 and $f(x::xs)$: t2, using the values $x : t1$ and $f(xs)$: t2 **Induction Principle**: To prove $P(L)$ for all L : $t1$ list, must prove
- $P([])$ and $P(x : : x s)$ for arbitrary $x : t1$, assuming $P(x s)$.

Demonstration: @ totality proof

infix @ fun [] @ L = L $| (x :: x s) 0 L = x ::(x s 0 L)$

Check Your Understanding

- Prove that len : t list -> int is total
- Prove that rev : t list -> t list is total
- Formulate the necessary lemmas and prove

 $len(L1 \otimes L2) \cong len(L1) + len(L2)$

for all appropriately-typed values L1 , L2

• Formulate the necessary lemmas and prove

len (rev L) ≃ len L

for all appropriately-typed values L

5-minute break?

Tail Recursion

Demonstration: rev traces

Today's slogan I:

Sometimes the best way to make your life easier is to make your life harder

trev : string list * string list -> string list REQUIRES: true $ENSURES:$ trev (L, acc) \cong (rev L) @acc

This is "harder" than rev: this function has an extra parameter, and the behavior of rev is just one special case $(\text{acc} = []$:

val rev =
$$
\text{fn}
$$
 L => trev(L, [])

Demonstration: trev live-coding

Prop. For all types t and all values L, acc : t list, $\text{tree}(L, \text{acc}) \cong (\text{rev } L) \text{@acc}.$

Proof by structural induction on L. $BC: L = []$. treeV ([], acc) \cong acc $(\text{defn. tree } v)$ ∼ \cong [] @ acc (defn. @) ∼ \cong (rev []) @ acc (defn. rev)

Correctness (continued)

Prop. For all types t and all values L, acc : t list, $\text{tree}(L, \text{acc}) \cong (\text{rev } L) \text{@acc}.$

IH: Assume trev (xs , acc ') ≅ (rev xs)@acc ' for all acc ' Pick arbitrary $x : t$ and $acc : t$ list. WTS: $\texttt{trev(x::xs,acc)} \cong (\texttt{rev}(x::xs))$ @acc $treeV(x::xs,acc)$ ∼ = trev (xs , x :: acc) (defn. trev) ∼ \cong (rev xs)@(x::acc) IH ≅ ((rev xs)@[x])@acc (Lemma, totality of rev) ∼ \cong (rev (x::xs)) @acc (defn. rev)

Demonstration: trev traces

trev is an example of a *tail recursive* function. Defn. A recursive function is said to be tail recursive if it does not perform any computation on the result of a recursive call

```
tfact : int * int -> int
REQUIRES: n \geq 0ENSURES: if act(n, acc) \cong acc * (fact n)
```

```
texp : int * int -> int
REQUIRES: n > 0ENSURES: exp(n, acc) \cong acc * (exp n)
```


Check Your Understanding

- Prove trev is total
- Write tfact, texp, etc. so that they satisfy their specs
- Write a tail-recursive accumulator version of the following function

fun sum $([] : int list) : int = 0$

$$
|\text{ sum } (x::xs) = x + \text{ sum } (xs)
$$

5-minute break?

Sequential Runtime Analysis

Today's slogan II:

Think big (and think long-term)

What we want

For a given function f, we want to know how long $(f \, v)$ takes to evaluate to a value, for each v such that $(f \ v)$ is valuable.

$$
v1 \t f \t v1 \Longrightarrow^{13} v1' \n v2 \t f \t v1 \Longrightarrow^{1} v2' \n v3 \t f \t v1 \Longrightarrow^{96000} v3' \n v4 \t f \t v1 \Longrightarrow^{115} v4'
$$

In general, for each v such that $(f \lor y)$ is valuable, we want to know the least n such that

$$
f\, \, v \Longrightarrow^n v'
$$

For some value v³.
23 **Sequential Runti Sequential Runtime Analysis** • Internal representations?

$$
6+6 \Longrightarrow ^? 12
$$

- Hardware dependence: want algorithm analysis to be the same for both our computers, even if yours is twice as fast as mine.
- For small inputs, the costs of initiating the process and storing variables is much higher relative to the costs of actual computation

Recall: exp versus pow

We instead generally assume *large* inputs, and instead seek to classify what inpact doubling, tripling, etc. the size of the input has on the computation time.

$$
W_f: \mathbb{N} \to \mathbb{N}
$$

$$
: n \mapsto (\text{the number of steps it takes to evaluate } f(y))
$$

$$
(f(y)) \text{ if } y \text{ is some input of size } n)
$$

This assumes we have a well-defined notion of size defined on the input type of f, such that $(f \vee)$ and $(f \vee')$ take the same number of steps to evaluate whenever v and v' are of the same size.

The big-O complexity of a (mathematical) function $W : \mathbb{N} \to \mathbb{N}$ tells us how fast W grows, proportionally to its input: Rough idea: Let $W, g : \mathbb{N} \to \mathbb{N}$. We say W is $O(g)$ if there's some constant

 $c > 0$ such that

 $W(n) \leq c g(n)$ for sufficiently large n

A bound is *tight* if there's no tighter bound which suffices. For the examples encountered in this class, it should be clear whether a bound is tight or not. **Example:** $W(n) = 3n^2 + 4n + 2$. This function is $O(n^4)$ and $O(n^3)$, but a tight bound is $O(n^2)$.

• If W is $O(\log n)$, then quadrupling the size of the input adds 2 (units of time) to the runtime.

$$
W(4n) \approx W(n)+2
$$

• If W is $O(n)$, then quadrupling the size of the input approximately quadruples the runtime:

 $W(4n) \approx 4W(n)$

28 Sequential Runtime Analysis

• If W is $O(n \log n)$, then quadrupling the size of the input scales and increments the runtime:

$$
W(4n) \approx 4(W(n)+2)
$$

- If W is $O(n^2)$, then quadrupling the input size multiplies the runtime by 16. $W(3n) \approx 9W(n)$ $W(4n) \approx 16W(n)$ $W(5n) \approx 25W(n)$
- If W is $O(2^n)$, then doubling the input size squares the output size, and tripling cubes the runtime.

$$
W(2n) \approx (W(n))^2 \quad W(3n) \approx (W(n))^3
$$

- How you're quantifying input size
- Recurrence
- Description of work tree
- Measurements of work tree (height, and width at each level)
- Summation
- Big-O

Worked example: exp analysis

Worked example: pow analysis

Worked example: @ analysis

Worked example: rev analysis

- We prove the behavior of structurally recursive functions using structural induction
- Accumulator arguments can facilitate efficient solutions to computational problems
- We can make use of the formalism of recurrences and asymptotic complexity to precisely articulate the runtime of recursive functional functions/algorithms
- Analysis of Multi-Step Algorithms
- Sorting
- Parallel Runtime Analysis

36 Sequential Runtime Analysis

Thank you!