
Structural Induction &
Asymptotic Analysis

Structural engineering

15-150 M21

Lecture 0607
07 June 2021



0 Struct Induct



Type aliases and invariants

SML allows us to declare type aliases

type fivetuple = int * int * int * int * int

We can use this to help define types with invariants

(* INVARIANT: for all n:nat , n>=0 *)

type nat = int

Struct Induct1



(* fact : nat -> nat

* REQUIRES: true

* ENSURES: fact n == n!

*)

fun fact 0 = 1

| fact (n:nat):nat = n * fact(n-1)

Struct Induct2



A useful fantasy

In reality, nat is just int, so all the constructors of type int are constructors
of type nat. But we pretend that nat is given by two constructors:

• 0

• Successor: if n:nat, then n+1:nat

Struct Induct3



Obtaining the nat recursion & induction principles

Pretending that all nats are constructed from zero and successor matches our
recursion & induction principle.

• Recursion: To define f : nat -> t, must provide f(0) and f(n),
using the value of f(n-1).

• Induction: To prove P(n) for all n:nat, must prove P(0) and P(n),
using the assumption of P(n-1)

Struct Induct4



Key Point
The recursion and induction principles for a (recursive) type exactly

match the constructors of that type

Struct Induct5



Lists are recursively-defined type

Recall that the type t list has two constructors:

• [] : t list

• (x::xs) : t list if x:t and xs : t list

Recursion Principle: To define f : t1 list -> t2, must provide
f([]) : t2 and f(x::xs) : t2, using the values x:t1 and
f(xs) : t2

Induction Principle: To prove P(L) for all L : t1 list , must prove
P([]) and P(x::xs) for arbitrary x:t1, assuming P(xs).

Struct Induct6



Demonstration: @ totality proof



infix @

fun [] @ L = L

| (x::xs) @ L = x::(xs @ L)

Struct Induct8



Check Your Understanding

• Prove that len : t list -> int is total

• Prove that rev : t list -> t list is total

• Formulate the necessary lemmas and prove

len(L1 @ L2) ∼= len(L1) + len(L2)

for all appropriately-typed values L1 ,L2

• Formulate the necessary lemmas and prove

len(rev L) ∼= len L

for all appropriately-typed values L

Struct Induct9



5-minute break?



1 Tail Recursion



Demonstration: rev traces



Today’s slogan I:

Sometimes the best way to make your
life easier is to make your life harder



Generalize

trev : string list * string list -> string list

REQUIRES: true
ENSURES: trev(L,acc) ∼= (rev L)@acc

This is “harder” than rev: this function has an extra parameter, and the
behavior of rev is just one special case (acc = []):

val rev = fn L => trev(L,[])

Tail Recursion13



Demonstration: trev
live-coding



Correctness

Prop. For all types t and all values L,acc : t list ,

trev(L,acc) ∼= (rev L)@acc .

Proof by structural induction on L.
BC: L=[].

trev([],acc) ∼= acc (defn. trev)
∼= [] @ acc (defn. @)
∼= (rev []) @ acc (defn. rev)

Tail Recursion15



Correctness (continued)

Prop. For all types t and all values L,acc : t list ,

trev(L,acc) ∼= (rev L)@acc .

IH: Assume trev(xs,acc ’) ∼= (rev xs)@acc ’ for all acc ’
Pick arbitrary x:t and acc : t list . WTS:
trev(x::xs,acc) ∼= (rev (x::xs))@acc

trev(x::xs,acc)
∼= trev(xs,x::acc) (defn. trev)
∼= (rev xs)@(x::acc) IH
∼= ((rev xs)@[x])@acc (Lemma, totality of rev)
∼= (rev (x::xs))@acc (defn. rev)

Tail Recursion16



Demonstration: trev traces



Tail Recursion

trev is an example of a tail recursive function.
Defn. A recursive function is said to be tail recursive if it does not perform

any computation on the result of a recursive call

Tail Recursion18



Can convert other functions to tail-recursive “accumulator version”

tfact : int * int -> int

REQUIRES: n ≥ 0

ENSURES: tfact(n,acc) ∼= acc * (fact n)

texp : int * int -> int

REQUIRES: n ≥ 0

ENSURES: exp(n,acc) ∼= acc * (exp n)

Tail Recursion19



Check Your Understanding

• Prove trev is total

• Write tfact , texp , etc. so that they satisfy their specs

• Write a tail-recursive accumulator version of the following function

fun sum ([] : int list):int = 0

| sum (x::xs) = x + sum(xs)

Tail Recursion20



5-minute break?



2 Sequential Runtime Analysis



Today’s slogan II:

Think big (and think long-term)



What we want

For a given function f, we want to know how long (f v) takes to evaluate to a
value, for each v such that (f v) is valuable.

v1 f v1 =⇒13 v1 ’

v2 f v1 =⇒1 v2 ’

v3 f v1 =⇒96000 v3 ’

v4 f v1 =⇒115 v4 ’

In general, for each v such that (f v) is valuable, we want to know the least n
such that

f v =⇒n v’

for some value v’.
Sequential Runtime Analysis23



A few problems with this. . .

• Internal representations?
6+6 =⇒? 12

• Hardware dependence: want algorithm analysis to be the same for both our
computers, even if yours is twice as fast as mine.

• For small inputs, the costs of initiating the process and storing variables is
much higher relative to the costs of actual computation

Sequential Runtime Analysis24



Recall: exp versus pow



Solution: Asymptotic Analysis

We instead generally assume large inputs, and instead seek to classify what
inpact doubling, tripling, etc. the size of the input has on the computation time.

Wf : N→ N
: n 7→ (the number of steps it takes to evaluate

(f v) if v is some input of size n)

This assumes we have a well-defined notion of size defined on the input type of
f, such that (f v) and (f v’) take the same number of steps to evaluate
whenever v and v’ are of the same size.

Sequential Runtime Analysis26



We can classify such functions with big-O

The big-O complexity of a (mathematical) function W : N→ N tells us how fast
W grows, proportionally to its input:
Rough idea: Let W , g : N→ N. We say W is O(g) if there’s some constant
c > 0 such that

W (n) ≤ cg(n) for sufficiently large n

A bound is tight if there’s no tighter bound which suffices. For the examples
encountered in this class, it should be clear whether a bound is tight or not.
Example: W (n) = 3n2 + 4n + 2. This function is O(n4) and O(n3), but a tight
bound is O(n2).

Sequential Runtime Analysis27



Some common big-O classes

• If W is O(log n), then quadrupling the size of the input adds 2 (units of
time) to the runtime.

W (4n) ≈ W (n) + 2

• If W is O(n), then quadrupling the size of the input approximately
quadruples the runtime:

W (4n) ≈ 4W (n)

Sequential Runtime Analysis28



Some common big-O classes

• If W is O(n log n), then quadrupling the size of the input scales and
increments the runtime:

W (4n) ≈ 4(W (n) + 2)

• If W is O(n2), then quadrupling the input size multiplies the runtime by 16.

W (3n) ≈ 9W (n) W (4n) ≈ 16W (n) W (5n) ≈ 25W (n)

• If W is O(2n), then doubling the input size squares the output size, and
tripling cubes the runtime.

W (2n) ≈ (W (n))2 W (3n) ≈ (W (n))3

Sequential Runtime Analysis29



The Tree Method

0 How you’re quantifying input size

1 Recurrence

2 Description of work tree

3 Measurements of work tree (height, and width at each level)

4 Summation

5 Big-O

Sequential Runtime Analysis30



Worked example: exp analysis



Worked example: pow analysis



Worked example: @ analysis



Worked example: rev analysis



Summary

• We prove the behavior of structurally recursive functions using structural
induction

• Accumulator arguments can facilitate efficient solutions to computational
problems

• We can make use of the formalism of recurrences and asymptotic complexity
to precisely articulate the runtime of recursive functional
functions/algorithms

Sequential Runtime Analysis35



Next Time

• Analysis of Multi-Step Algorithms

• Sorting

• Parallel Runtime Analysis

Sequential Runtime Analysis36



Thank you!


	Struct Induct
	Tail Recursion
	Sequential Runtime Analysis

