
Induction and Recursion

Proof-Driven Functional
Programming

15-150 M21

Lecture 0602
02 June 2021

15-150 Principles of Functional Programming

X Basics of Functional Computation

• Induction and Recursion

• Polymorphism & Higher-Order Functions

• Functional Control Flow

• The SML Modules System

• Applications & Connections

Induction and Recursion1

0 Patterns

Casing on inputs

To write sophisticated code, we often need to split into cases.
This can be achieved with if expressions,

fun exp(n:int):int =

if n=0 then 1 else 2*exp(n-1)

But, for more complex stuff, ifs get clunky:
fun quadrant (m:int ,n:int):string =

if m=0 orelse n=0

then "boundary"

else if m>0

then if n>0

then "I"

else "IV"

else if n<0

then "II"

else "III"

Patterns2

General idea

SML provides a system of pattern matching, which allows us to split into
cases in a elegant way.

Patterns3

Casing on bools

We can pattern match against the two constructors of the bool type: true

and false .
0602.0 (patterns.sml)

1 val toBit : bool -> int =

2 fn true => 1 | false => 0

0602.1 (patterns.sml)

1 val not : bool -> bool =

2 fn true => false | false => true

Patterns4

If-then-else is syntactic sugar

The if-then-else structure we’ve been using so far

if b then e1 else e2

is just syntactic sugar for

(fn true => e1 | false => e2) b

Check Your Understanding Verify that the typing & evaluation rules for the
above expressions are indeed identical.

Patterns6

Match against strings

Can pattern match against values of type string (each string literal is a
constructor of type string).

0602.2 (patterns.sml)

1 fun paren ("":string):string = ""

2 | paren " " = ""

3 | paren s = "(" ^ s ^ ")"

0602.3 (patterns.sml)

1 fun isLambda "lambda" = true

2 | isLambda _ = false

Wildcard ignores input (use to indicate the input is irrelevant).

Patterns7

Likewise with int

0602.4 (patterns.sml)

1 val isZeroOrOne : int -> bool =

2 fn 0 => true | 1 => true | _ => false

Patterns8

Natural Number Functions

If we REQUIRE n>=0 and are defining a function by recursion on the natural
numbers, we can have zero and successor cases

0602.5 (patterns.sml)

1 (* REQUIRES: n>=0 *)

2 fun exp (0:int):int = 1

3 | exp n = 2 * exp(n-1)

Patterns9

Old exp traces are clunky

exp 4

=⇒ if 4=0 then 1 else 2*exp(4-1)

=⇒ 2*exp(3)

=⇒ 2*(if 3=0 then 1 else 2*exp(3-1))

=⇒ 2*(2* exp (2))

=⇒ 2*(2*(if 2=0 then 1 else 2*exp(2-1)))

=⇒ 2*(2*(2* exp (1)))

=⇒ 2*(2*(2*(if 1=0 then 1 else 2*exp

(1-1))))

=⇒ 2*(2*(2*(2* exp (0))))

=⇒ 2*(2*(2*(2*(if 0=0 then 1 else 2*exp

(0-1)))))

Patterns10

Much better. . .

exp 4

=⇒ 2 * exp(3)

=⇒ 2 * 2 * exp(2)

=⇒ 2 * 2 * 2 * exp(1)

=⇒ 2 * 2 * 2 * 2 * exp (0)

=⇒ 2 * 2 * 2 * 2 * 1

=⇒ 16

Patterns11

Allowed patterns

• Constructors

fn true => e1 | false => e2

• Variable names

fn (x:int) => x

• Wildcards

fn (_ : string) => 2

• Tuples of patterns

val P : int * int = ...

val (a,b) = P

Patterns12

Check Your Understanding Determine the behavior of this function

fun foo ((0,0),_) = "a"

| foo ((_,0) ,(7,_)) = "b"

| foo (_, (8,8)) = "c"

| foo _ = "d"

Patterns13

Not patterns

• Function applications
(* Doesn ’t work *)

val m+n = 2

val (s1 ^ s2) = "hello world"

• Non-match-able types
(* Doesn ’t work *)

val (fn x => e) : int -> string = f

val 2.0 = 2.0

• Repetitive patterns
(* Doesn ’t work *)

fun equal (m:int ,m:int) = true

| equal _ = false
Patterns14

Case expressions

A very common expression is to apply a pattern-matching function to some
expression:

(fn (true ,_) => e1

| (false ,true) => e2

| _ => e3

) (x < 7, x < 15)

SML provides a nicer syntax for this:

case (x < 7, x < 15) of

(true ,_) => e1

| (false ,true) => e2

| _ => e3

Patterns15

The “flase” bug

case b of

flase => 2

| true => 1

Patterns16

Exhaustivity

SML can tell at compile-time whether the cases you’ve written are exhaustive or
not.

0602.6 (patterns.sml)

1 fun purple 4 = true

2 | purple ∼117 = false

It’ll warn you, but allow the computation to proceed.
The exception Match is raised when none of the clauses match the given
expression.

Patterns17

Totality

Defn. A value f : t1 -> t2 is said to be total if, for all values v : t1,
the expression f(v) is valuable.
Examples:

• op+

• Int.toString

Non-examples:

• exp

• div

• purple

If the clauses of a function are non-exhaustive, then that function cannot be total.

Patterns18

1 N Recursion/Induction

Motivation: Proving the spec

0602.7 (nat.sml)

1 (* exp : int -> int

2 * REQUIRES: n>=0

3 * ENSURES: exp(n) == 2^n

4 *)

5 fun exp (0:int):int = 1

6 | exp n = 2 * exp(n-1)

7

8 val 1 = exp 0

9 val 131072 = exp 17

N Recursion/Induction19

Code Proof

Cases/clauses Cases

Simple Example

fun not true = false

| not false = true

Prop. not : bool -> bool is total.
Proof. Want to show: not v valuable for all values v:bool .

• v=true

not true =⇒ false (First clause of not)

• v=false

not false =⇒ true (Second clause of not)

N Recursion/Induction21

Check Your Understanding

Prove paren or isLambda total

N Recursion/Induction22

It’s simple. . .

We want to prove facts about the behavior of exp(n) for all nonnegative
integers n, i.e. for all natural numbers n. How do we prove something about all
natural numbers? Induction!
Principle The principle of weak or simple induction says that if

• P(0) holds

• For each n ∈ N, P(n) implies P(n + 1)

then P(n) holds for all n ∈ N.

0602.7 (nat.sml)

6 fun exp (0:int):int = 1

7 | exp n = 2 * exp(n-1)

N Recursion/Induction23

Code Proof

Cases/clauses Cases

Recursion Induction

Simple recursion (n calls n-1) Weak Induction (assume n, prove n + 1)

Proving the valuability of exp

Prop. For all values n:int with n ≥ 0, exp(n) is valuable.

Proof by weak induction on n.
BC: n=0.

exp 0 =⇒ 1. (first clause, exp)

IH : Suppose for some n>=0, exp(n) is valuable.
WTS: exp(n+1) is valuable.

exp(n+1) =⇒ 2 * exp(n) (second clause, exp)

=⇒ 2 * v (for some value v, by IH)

=⇒ v’ (for some value v’, by totality of op*)

N Recursion/Induction25

Check Your Understanding

Prove:

Prop. For all values n:int n ≥ 0,

exp(n) ∼= 2n

(using the mathematical facts that 20 = 1 and 2n+1 = 2 · 2n for all n ∈ N)

N Recursion/Induction26

Key Skill:
Implementing the spec

fun fact

The mathematical notion of the factorial can be given as:

0! = 1

(n + 1)! = (n + 1) · n!

fact : int -> int

REQUIRES: n>=0
ENSURES: fact(n) ∼= n!

N Recursion/Induction28

0602.8 (nat.sml)

1 (* fact : int -> int

2 * REQUIRES: n>=0

3 * ENSURES: fact(n) == n!

4 *)

5 fun fact 0 = 1

6 | fact (n:int):int = n * fact(n-1)

7

8 val 1 = fact 0

9 val 720 = fact 6

N Recursion/Induction29

Today’s slogan:

Assume smaller, make bigger (and
don’t forget the base case)

Correctness Proof

Prop. For all values n:int with n ≥ 0, fact(n) ∼= n!.

Proof by weak induction on n.
BC: n=0.

fact 0 ∼= 1 (Defn. of fact)

= 0! (math)

IH : Suppose for some n>=0, fact(n) ∼= n!.
WTS: fact(n+1) ∼= (n+1)!.

fact(n+1) ∼= (n+1) * fact(n) (Defn. of fact)
∼= (n+1) * n! IH

= (n+1)! (math)
N Recursion/Induction31

Code Proof

Cases/clauses Cases

Recursion Induction

Simple induction (n calls n-1) Weak Induction

Recursive call Inductive hypothesis

Five Essential Proof Elements

Any inductive proof you turn in for 150 should include:

• A statement of what kind of induction you’re using

• A statement of which variable you’re inducting on

• Explicit code stepping/equivalences

• Citations for each step (even math)

• An explicit inductive hypothesis

N Recursion/Induction33

5-minute break

2 Strong Induction

We can write exp better

If n is even, then

2n =
(

2n/2
)2

If n is odd, then

2n = 2 ·
(

2bn/2c
)2

Strong Induction35

By with a little help from my friends

0602.9 (pow.sml)

1 fun square (x:int):int = x * x

0602.10 (pow.sml)

1 fun even (x:int):bool = (x mod 2)=0

Lemma 1 square is total
Lemma 2 even is total
Lemma 3 square(x) ∼= x2 for all x:int
Lemma 4 even(n) ∼= true iff n is even

Strong Induction36

Code Proof

Cases/clauses Cases

Recursion Induction

Simple recursion Weak Induction

Recursive call Inductive hypothesis

Helper function Lemma

0602.11 (pow.sml)

1 fun pow (0:int):int = 1

2 | pow n =

3 case (even n) of

4 true => square(pow(n div 2))

5 | false => 2 * square(pow(n div 2))

Strong Induction38

Equivalence

Thm. For all values n:int where n>=0,

exp(n) ∼= pow(n).

Proof next time

Strong Induction39

Code Proof

Cases/clauses Cases

Recursion Induction

Simple recursion Weak Induction

Recursive call Inductive hypothesis

Helper function Lemma

Non-simple recursion Strong Induction

3 An Intro to Lists

Motivation: We’ve got data, but no structure

Base types:

• int

• bool

• string

• real

• char

Type constructions

• *

• ->

An Intro to Lists41

The list type

• For each type t, there is a type

t list

of lists of elements of t
• There are two constructors of type t list :
I []: t list

I If x:t and xs:t list , then

(x::xs) : t list

• The values of type t list are lists [x1 ,x2 ,...,xn], including [].
This is just syntactic sugar for [] and ::, however:
I [1]: int list is 1::[]

I ["functions","are","values"] : string list is just
"functions"::"are"::"values"::[]

An Intro to Lists42

0602.12 (lists.sml)

1 val null : string list -> bool =

2 fn [] => true | _ => false

An Intro to Lists43

len : int list -> int

REQUIRES: true
ENSURES: len L evaluates to the length of L

0602.13 (lists.sml)

1 fun len ([] : int list):int = 0

2 | len (x::xs) = 1 + len xs

3

4 val 5 = len [1,2,3,4,5]

5 val 2 = len [∼5000 ,19]

6 val 0 = len []

An Intro to Lists44

(op @) : int list * int list -> int list

REQUIRES: true
ENSURES: If L1 is a list of length m and L2 is a lsit of length n, then L1@L2

evaluates to a list of length m + n whose first m elements are the elements of
L1 (in the same order they appear in L1) and whose last n elements are the
elements of L2 (in the same order they appear in L2)

0602.14 (lists.sml)

1 infix @

2 fun ([]: int list) @ L = L

3 | (x::xs) @ (L:int list) =

4 x::(xs @ L)

An Intro to Lists45

Summary

• Pattern-matching facilitates concise, elegant function declarations

• Well-written functional code corresponds to its own correctness proof

• Most interesting functions are recursive, and have inductive correctness
proofs

• Lists are data structures in SML defined by the [] and :: constructors

An Intro to Lists46

Next Time

• pow proof

• More about lists

• Tail recursion

• Recurrences & sequential runtime analysis

An Intro to Lists47

Thank you!

	Patterns
	N Recursion/Induction
	Strong Induction
	An Intro to Lists

