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X Basics of Functional Computation

• Induction and Recursion

• Polymorphism & Higher-Order Functions

• Functional Control Flow

• The SML Modules System

• Applications & Connections
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0 Patterns



Casing on inputs

To write sophisticated code, we often need to split into cases.
This can be achieved with if expressions,

fun exp(n:int):int =

if n=0 then 1 else 2*exp(n-1)

But, for more complex stuff, ifs get clunky:
fun quadrant (m:int ,n:int):string =

if m=0 orelse n=0

then "boundary"

else if m>0

then if n>0

then "I"

else "IV"

else if n<0

then "II"

else "III"
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General idea

SML provides a system of pattern matching, which allows us to split into
cases in a elegant way.
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Casing on bools

We can pattern match against the two constructors of the bool type: true

and false .
0602.0 (patterns.sml)

1 val toBit : bool -> int =

2 fn true => 1 | false => 0

0602.1 (patterns.sml)

1 val not : bool -> bool =

2 fn true => false | false => true
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If-then-else is syntactic sugar

The if-then-else structure we’ve been using so far

if b then e1 else e2

is just syntactic sugar for

(fn true => e1 | false => e2) b

Check Your Understanding Verify that the typing & evaluation rules for the
above expressions are indeed identical.
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Match against strings

Can pattern match against values of type string (each string literal is a
constructor of type string).

0602.2 (patterns.sml)

1 fun paren ("":string):string = ""

2 | paren " " = ""

3 | paren s = "(" ^ s ^ ")"

0602.3 (patterns.sml)

1 fun isLambda "lambda" = true

2 | isLambda _ = false

Wildcard ignores input (use to indicate the input is irrelevant).
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Likewise with int

0602.4 (patterns.sml)

1 val isZeroOrOne : int -> bool =

2 fn 0 => true | 1 => true | _ => false
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Natural Number Functions

If we REQUIRE n>=0 and are defining a function by recursion on the natural
numbers, we can have zero and successor cases

0602.5 (patterns.sml)

1 (* REQUIRES: n>=0 *)

2 fun exp (0:int):int = 1

3 | exp n = 2 * exp(n-1)
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Old exp traces are clunky

exp 4

=⇒ if 4=0 then 1 else 2*exp(4-1)

=⇒ 2*exp(3)

=⇒ 2*(if 3=0 then 1 else 2*exp(3-1))

=⇒ 2*(2* exp (2))

=⇒ 2*(2*( if 2=0 then 1 else 2*exp(2-1)))

=⇒ 2*(2*(2* exp (1)))

=⇒ 2*(2*(2*( if 1=0 then 1 else 2*exp

(1-1))))

=⇒ 2*(2*(2*(2* exp (0))))

=⇒ 2*(2*(2*(2*( if 0=0 then 1 else 2*exp

(0-1)))))
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Much better. . .

exp 4

=⇒ 2 * exp(3)

=⇒ 2 * 2 * exp(2)

=⇒ 2 * 2 * 2 * exp(1)

=⇒ 2 * 2 * 2 * 2 * exp (0)

=⇒ 2 * 2 * 2 * 2 * 1

=⇒ 16
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Allowed patterns

• Constructors

fn true => e1 | false => e2

• Variable names

fn (x:int) => x

• Wildcards

fn (_ : string) => 2

• Tuples of patterns

val P : int * int = ...

val (a,b) = P
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Check Your Understanding Determine the behavior of this function

fun foo ((0,0),_) = "a"

| foo ((_,0) ,(7,_)) = "b"

| foo ( _, (8,8)) = "c"

| foo _ = "d"
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Not patterns

• Function applications
(* Doesn ’t work *)

val m+n = 2

val (s1 ^ s2) = "hello world"

• Non-match-able types
(* Doesn ’t work *)

val (fn x => e) : int -> string = f

val 2.0 = 2.0

• Repetitive patterns
(* Doesn ’t work *)

fun equal (m:int ,m:int) = true

| equal _ = false
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Case expressions

A very common expression is to apply a pattern-matching function to some
expression:

(fn (true ,_) => e1

| (false ,true) => e2

| _ => e3

) (x < 7, x < 15)

SML provides a nicer syntax for this:

case (x < 7, x < 15) of

(true ,_) => e1

| (false ,true) => e2

| _ => e3
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The “flase” bug

case b of

flase => 2

| true => 1
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Exhaustivity

SML can tell at compile-time whether the cases you’ve written are exhaustive or
not.

0602.6 (patterns.sml)

1 fun purple 4 = true

2 | purple ∼117 = false

It’ll warn you, but allow the computation to proceed.
The exception Match is raised when none of the clauses match the given
expression.
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Totality

Defn. A value f : t1 -> t2 is said to be total if, for all values v : t1,
the expression f(v) is valuable.
Examples:

• op+

• Int.toString

Non-examples:

• exp

• div

• purple

If the clauses of a function are non-exhaustive, then that function cannot be total.
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1 N Recursion/Induction



Motivation: Proving the spec

0602.7 (nat.sml)

1 (* exp : int -> int

2 * REQUIRES: n>=0

3 * ENSURES: exp(n) == 2^n

4 *)

5 fun exp (0:int):int = 1

6 | exp n = 2 * exp(n-1)

7

8 val 1 = exp 0

9 val 131072 = exp 17
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Code Proof

Cases/clauses Cases



Simple Example

fun not true = false

| not false = true

Prop. not : bool -> bool is total.
Proof. Want to show: not v valuable for all values v:bool .

• v=true

not true =⇒ false (First clause of not)

• v=false

not false =⇒ true (Second clause of not)
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Check Your Understanding

Prove paren or isLambda total
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It’s simple. . .

We want to prove facts about the behavior of exp(n) for all nonnegative
integers n, i.e. for all natural numbers n. How do we prove something about all
natural numbers? Induction!
Principle The principle of weak or simple induction says that if

• P(0) holds

• For each n ∈ N, P(n) implies P(n + 1)

then P(n) holds for all n ∈ N.

0602.7 (nat.sml)

6 fun exp (0:int):int = 1

7 | exp n = 2 * exp(n-1)
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Code Proof

Cases/clauses Cases

Recursion Induction

Simple recursion (n calls n-1) Weak Induction (assume n, prove n + 1)



Proving the valuability of exp

Prop. For all values n:int with n ≥ 0, exp(n) is valuable.

Proof by weak induction on n.
BC: n=0.

exp 0 =⇒ 1. (first clause, exp)

IH : Suppose for some n>=0, exp(n) is valuable.
WTS: exp(n+1) is valuable.

exp(n+1) =⇒ 2 * exp(n) (second clause, exp)

=⇒ 2 * v (for some value v, by IH )

=⇒ v’ (for some value v’, by totality of op*)
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Check Your Understanding

Prove:

Prop. For all values n:int n ≥ 0,

exp(n) ∼= 2n

(using the mathematical facts that 20 = 1 and 2n+1 = 2 · 2n for all n ∈ N)
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Key Skill:
Implementing the spec



fun fact

The mathematical notion of the factorial can be given as:

0! = 1

(n + 1)! = (n + 1) · n!

fact : int -> int

REQUIRES: n>=0
ENSURES: fact(n) ∼= n!
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0602.8 (nat.sml)

1 (* fact : int -> int

2 * REQUIRES: n>=0

3 * ENSURES: fact(n) == n!

4 *)

5 fun fact 0 = 1

6 | fact (n:int):int = n * fact(n-1)

7

8 val 1 = fact 0

9 val 720 = fact 6
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Today’s slogan:

Assume smaller, make bigger (and
don’t forget the base case)



Correctness Proof

Prop. For all values n:int with n ≥ 0, fact(n) ∼= n!.

Proof by weak induction on n.
BC: n=0.

fact 0 ∼= 1 (Defn. of fact)

= 0! (math)

IH : Suppose for some n>=0, fact(n) ∼= n!.
WTS: fact(n+1) ∼= (n+1)!.

fact(n+1) ∼= (n+1) * fact(n) (Defn. of fact)
∼= (n+1) * n! IH

= (n+1)! (math)
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Code Proof

Cases/clauses Cases

Recursion Induction

Simple induction (n calls n-1) Weak Induction

Recursive call Inductive hypothesis



Five Essential Proof Elements

Any inductive proof you turn in for 150 should include:

• A statement of what kind of induction you’re using

• A statement of which variable you’re inducting on

• Explicit code stepping/equivalences

• Citations for each step (even math)

• An explicit inductive hypothesis
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5-minute break



2 Strong Induction



We can write exp better

If n is even, then

2n =
(

2n/2
)2

If n is odd, then

2n = 2 ·
(

2bn/2c
)2
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By with a little help from my friends

0602.9 (pow.sml)

1 fun square (x:int):int = x * x

0602.10 (pow.sml)

1 fun even (x:int):bool = (x mod 2)=0

Lemma 1 square is total
Lemma 2 even is total
Lemma 3 square(x) ∼= x2 for all x:int
Lemma 4 even(n) ∼= true iff n is even

Strong Induction36



Code Proof

Cases/clauses Cases

Recursion Induction

Simple recursion Weak Induction

Recursive call Inductive hypothesis

Helper function Lemma



0602.11 (pow.sml)

1 fun pow (0:int):int = 1

2 | pow n =

3 case (even n) of

4 true => square(pow(n div 2))

5 | false => 2 * square(pow(n div 2))
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Equivalence

Thm. For all values n:int where n>=0,

exp(n) ∼= pow(n).

Proof next time
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Code Proof

Cases/clauses Cases

Recursion Induction

Simple recursion Weak Induction

Recursive call Inductive hypothesis

Helper function Lemma

Non-simple recursion Strong Induction



3 An Intro to Lists



Motivation: We’ve got data, but no structure

Base types:

• int

• bool

• string

• real

• char

Type constructions

• *

• ->
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The list type

• For each type t, there is a type

t list

of lists of elements of t
• There are two constructors of type t list :
I []: t list

I If x:t and xs:t list , then

(x::xs) : t list

• The values of type t list are lists [x1 ,x2 ,...,xn], including [].
This is just syntactic sugar for [] and ::, however:
I [1]: int list is 1::[]

I ["functions","are","values"] : string list is just
"functions"::"are"::"values"::[]
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0602.12 (lists.sml)

1 val null : string list -> bool =

2 fn [] => true | _ => false
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len : int list -> int

REQUIRES: true
ENSURES: len L evaluates to the length of L

0602.13 (lists.sml)

1 fun len ([] : int list):int = 0

2 | len (x::xs) = 1 + len xs

3

4 val 5 = len [1,2,3,4,5]

5 val 2 = len [∼5000 ,19]

6 val 0 = len []
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(op @) : int list * int list -> int list

REQUIRES: true
ENSURES: If L1 is a list of length m and L2 is a lsit of length n, then L1@L2

evaluates to a list of length m + n whose first m elements are the elements of
L1 (in the same order they appear in L1) and whose last n elements are the
elements of L2 (in the same order they appear in L2)

0602.14 (lists.sml)

1 infix @

2 fun ([]: int list) @ L = L

3 | (x::xs) @ (L:int list) =

4 x::(xs @ L)
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Summary

• Pattern-matching facilitates concise, elegant function declarations

• Well-written functional code corresponds to its own correctness proof

• Most interesting functions are recursive, and have inductive correctness
proofs

• Lists are data structures in SML defined by the [] and :: constructors
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Next Time

• pow proof

• More about lists

• Tail recursion

• Recurrences & sequential runtime analysis
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Thank you!
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