
Welcome & Intro

Course Stuff, Functional
Programming, and the SML

Evaluation System

15-150 M21

Lecture 0521
21 May 2021



0 Course Stuff



The 150 Staff

Jacob Neumann

Avery Cowan, Eshita Kar, James Gallicchio, Joseph Rotella, Juhi Agrawal, Justin
Zhang, Leah Restad, Lili Chang, Ryan Stoltzfus, Sam Banks, Sanjana Meduri,

Siddharth Paratkar, Sonya Simkin, Thea Brick, & Will Fowlkes

Course Stuff1



Where to go for info

• Canvas

• Website (cs.cmu.edu/~15150/)

• Piazza

• Homework handouts

Course Stuff2

http://www.cs.cmu.edu/~15150/
cs.cmu.edu/~15150/


To-Do

• Make sure you’re on the 150 M21 Piazza

• Make sure you can access the Canvas

• Fill out the lab availability form (if you haven’t already)

forms.gle/x4z7wWiqgDfwFzPq9

• Read the website

• Setup Lab (to be posted today, needs to be done by Tuesday)

Course Stuff3

https://forms.gle/x4z7wWiqgDfwFzPq9


Lectures

Three times a week (usually)
• Monday: Introduce & motivate topic
• Wednesday: Advanced Stuff
• Friday: Case study, application, or further topic

This fits in with homework cycle:
• Sunday: Homework released
• Monday: Lecture (should give you enough to start some parts of homework)
• Tuesday: Lab (should much better equip you to do homework)
• Wednesday: Lecture (should give you everything you need to do homework)
• Friday: Lecture (shouldn’t ne necessary for homework, but perhaps helpful)
• Saturday: Homework due
• Sunday: Homework due (use late day)

Course Stuff4



How to get the most out of lecture

• Answer the in-lecture questions! (Async: pause and come up with answer)

• Fill out the worksheet!

• Quiz yourself afterwards!

• Do try this at home!

Course Stuff5



Lecture-Related Stuff

• Worksheets and solutions

• Lecture code (& numbering)

• Aux-Library (github.com/smlhelp/aux-library/)

• smlhelp (smlhelp.github.io)

• Additional “Check Your Understanding”s

• 5-minute breaks

• Key points/Key skills

• Slogans

Course Stuff6

https://github.com/smlhelp/aux-library/
https://smlhelp.github.io


Today’s slogan:

Computation is evaluation



1 Functional Computation



What do we use computers for?

Artwork credit: Mia Tang

Functional Computation8



We’re interested in two particular answers:

To cause an effect

To calculate a value

Functional Computation9



Effect: A change to the state of the computer or the world

Functional Computation10



Value: A piece of data which is “fully calculated” or “fully simplified” – the kind
of thing that can serve as an answer to a computational question (need to specify

what this means)

Functional Computation11



Key Observation
Causing effects and calculating values are distinct kinds of computational tasks

Functional Computation12



Check Your Understanding

Suppose you got bored during quarantine and composed a lengthy work of fan
fiction, typed into your computer (and saved your work, of course!). Is this
causing an effect or calculating a value, or both?

What about if you subsequently checked the word count on your
soon-to-be-bestseller?

Functional Computation13



Imperative Programming: computation is accumulating effects

An imperative program is a structured sequence of commands, specifying how
to mutate the computer’s state (that is, which effects to have, and in what
order).

Imperative programs calculate values by accumulating effects: we initialize the
computer’s state, perform a bunch of effects, and then read off the result.

Functional Computation14



Example



The Problem of Destruction (Referential Opacity)

When using an imperative program to calculate values, you have to be careful
because it might matter when you ask.

The smart response to this:
A good programmer will avoid adverse side-effects

The bold response to this:
A good programming paradigm will prohibit adverse side-effects

Functional Computation16



Functional Programming

Functional Programming: computation is the calculation of values (and
maybe some effects happen along the way)
Pure Functional Programming: computation is the calculation of values
(and no effects happen along the way)

A functional program is a description of how to calculate values, i.e. how to turn
unevaluated expressions into values.

exp (17) =⇒ 131072

Purely functional programs are inherently non-destructive, and therefore
executing the same code will always give the same result

Functional Computation17



Functional Programs vs. Functional Languages

A functional programming language is a programming language designed
around the functional model of computation.

It’s important to remember:

• Functional aspects exist in most languages, and you can (and should!) use
functional techniques in non-functional languages

• Functional languages (including SML) often allow for limited kinds of effects,
but they have to fit into the overall functional nature of the language

Functional Computation18



Course Overview

• May: Basics of the functional model of computation

• Early June: Induction and recursion in functional programming

• Mid June: Abstracting common patterns of reasoning

• Late June: Designing elegant control flow using functional methods

• Early July: Building large pieces of software

• Late July: Elaborate code we can write in this framework

• Early August: Interaction with other programming paradigms

Functional Computation19



5-minute break



2 Expressions and Evaluation



Standard ML

We teach this course in a language called Standard ML (SML). SML is:

• Functional

• Mostly pure

• Strongly-typed

• Statically-scoped

• Call-by-value, or “eager”

• Modular

Expressions and Evaluation21



Computing in SML

SML is a functional language: rather than thinking of computation as state
mutations, we think of computation as evaluation of expressions.

In this case, 217 is an expression, which we want to evaluate down to obtain
131072.

Expressions and Evaluation22



What’s 217?

Person 1: Hey, do you know what 217 is?
Person 2: Yeah, it’s 217.
Is Person 2 correct? Yes. Did they answer the question? No.

Person 1: Hey, do you know what 217 is?
Person 2: Yeah, it’s 2× 216.
Is Person 2 correct? Yes. Did they answer the question? Still no.

Expressions and Evaluation23



The goal of functional programming is to produce values

Moral of the previous slide: Computational queries (like “what’s 217?”)
come with a built-in notion of what counts as an answer: 217 and 2× 216 aren’t
acceptable answers to the question (whereas 131072 is an acceptable answer).

Functional programming has similar concepts:

• An expression is a syntactically-well-formed piece of code

• Some expressions are called values

• Expressions can be evaluated (or “reduced”), perhaps producing a value.

Expressions and Evaluation24



Example



Stepping

Evaluating an expression down to a value takes place in a finite number of
discrete “steps”. We trace out evaluations like follows.

(3+2) *(9 -6) =⇒ 5 * (9-6)

=⇒ 5 * 3

=⇒ 15

Each of these is “one step”, but generally the notation e1 =⇒ e2 means that
evaluating e1 steps to e2 in some finite number of steps.

• For all expressions e, e =⇒ e

• If e1 =⇒ e2 and e2 =⇒ e3 then e1 =⇒ e3

Expressions and Evaluation26



Values are the finished result of evaluation

So exp (17) =⇒ 131072 , but after that, we’re done: there’s no further v
such that 131072 =⇒ v (besides v = 131072).

An expression e is a value if evaluation terminates at e.

Expressions and Evaluation27



Nontermination

One problem: there are some expressions e which, if evaluated, do not result in a
value.

• Raised exceptions:

1 div 0

• Looping forever:

e1 =⇒ e2 =⇒ e3 =⇒ e4 =⇒ e5 =⇒ e6 =⇒ e7 =⇒ . . .

Expressions and Evaluation28



Trichotomy

Claim For every syntactically-valid SML expression e (that we can evaluate),
exactly one of the following holds:

• e =⇒ v for some value v

• the evaluation of e raises some exception

• the evaluation of e loops forever

Notation/Terminology: If e =⇒ v where v is a value, e is called valuable.
We’ll also use the notation e ↪→ v to say that e =⇒ v and v is a value

Expressions and Evaluation29



Extensional Equivalence

Whether e is valuable, raises an exception, or loops forever is called the runtime
behavior of e. Two expressions e and e’ are equivalent if they have the same
runtime behavior.

Defn. Two expressions e and e’ are said to be extensionally equivalent
(written e ∼= e’) if either:

• there is some value v such that e ↪→ v and e’ ↪→ v

• the evaluation of e and e’ both raise the same exception

• the evaluation of both e and e’ loop forever

Referential Transparency: If e ∼= e’, then any instance of e can freely be
replaced with e’

Expressions and Evaluation30



Summary

• Functional computation is the evaluation of expressions

• Evaluating a given expression either results in a value, raises an exception, or
loops forever

Expressions and Evaluation31



Next Time

SML is:

• Functional

• Mostly pure

• Strongly-typed

• Statically-scoped

• Call-by-value, or “eager”

• Modular

Expressions and Evaluation32



Thank you!


	Course Stuff
	Functional Computation
	Expressions and Evaluation

