

Intro to **Homotopy Type Theory**

Martin-Löf Type Theory The Language of Homotopy Type Theory

What is MLTT?

Martin-Löf Type Theory is a formal language and deductive system which has the form of an abstract typed programming language and can be used to reason about both the topology of higher-dimensional spaces and higher-order intuitionistic logic.

Speaking the Language

 $\overline{2}$

 mltt

HoTT

Titans of Mathematics Clash Over Epic Proof of ABC Conjecture

Two mathematicians have found what they say is a hole at the heart of a proof that has convulsed the mathematics community for nearly six years.

Despite multiple conferences dedicated to explicating Mochizuki's proof, number theorists have struggled to come to grips with its underlying ideas. His series of papers, which total more than 500 pages, are written in an impenetrable style, and refer back to a further 500 pages or so of previous work by Mochizuki, creating what one mathematician. Brian Conrad of Stanford University, has called "a sense of infinite regress."

But the meeting led to an oddly unsatisfying conclusion: Mochizuki couldn't convince Scholze and Stix that his argument was sound, but they couldn't convince him that it was unsound. Mochizuki has now posted Scholze's and Stix's report on his website, along with several reports of his own in rebuttal. (Mochizuki and Hoshi did not respond to requests for comments for this article.)

Martin-Löf Type Theory

Speaking the Language

Language & Deduction

```
₩₩⊪ ₩♦∎≞SOM■♦S● ₩◘◘♦◘ ◘ਆ S
ロメ ※<del>@</del> ◆米M ◆M 4 © • © %OO◆D
```
 $\bullet \vee \textcircled{r}$ \mathcal{H} \bullet \bullet \mathcal{H} \bullet \mathcal{H} \bullet \mathcal{H} \bullet \mathcal{H} $SO\rightarrow\mathfrak{m}$ \Box $\bullet\mathcal{V}$ \Box \bullet **DDD** \Box δ ⁰. \Box \Box δ \odot \cdot \Box

Therefore...

 \blacklozenge \mathfrak{m} \mathfrak{m} \blacktriangleright \mathfrak{m} \mathfrak{m} \mathfrak{m} \blacksquare

There are certain general conditions under which the structure of a language is regarded as exactly specified. Thus, to specify the structure of a language, we must characterize unambiguously the class of those words and expressions which are to be considered meaningful. In particular, we must indicate all words which we decide to use without defining them, and which are called "*undefined* (or *primitive*) terms"; and we must give the so-called rules of definition for introducing new or defined terms. Furthermore, we must set up criteria for distinguishing within the class of expressions those which we call "sentences." Finally, we must formulate the conditions under which a sentence of the language can be *asserted*. In particular, we must indicate all *axioms* (or *primitive* sentences), i.e., those sentences which we decide to assert without proof; and we must give the so-called rules of inference (or rules of proof) by means of which we can deduce new asserted sentences from other sentences which have been previously asserted. Axioms, as well as sentences deduced from them by means of rules of inference, are referred to as "theorems" or "provable sentences."

- Alfred Tarski, The Semantic Conception of Truth (1944)

- $b=0$ \geq
- if $(b=4 \text{ or } b=5)$: \mathbf{L}
- do_thing1() \geq
- else: \geq

 $\overline{7}$

 $do_{thing2()}$ \geq

Two Judgments of MLTT

 $\boldsymbol{X: \mathcal{T}}$ Term Type

$$
\begin{array}{c}\n x \doteq x' : T \\
_{\text{Judgmental}} \\
_{\text{Equality}}\n \end{array}
$$

Martin-Löf Type Theory

8

Speaking the Language

mltt

HoTT

₩₩∭⋰☆◆■≏SO∭■♦S●゜₩□□◆□ □☆゜S □ ୖ 第面 ◆ 米 儿 ◆ 儿 → 儿 ユ エ → エ エ → エ エ エ エ エ エ エ エ エ

```
\bullet \gamma \textcircled{2} \mathfrak{H} \bullet \mathfrak{su} \times \mathfrak{H} and \mathfrak{g} \boxtimes\deltas\cdotm = \bullety\circ\bulletDDD \Box \delta<sup>o</sup>\circ\cdotm o \delta<sup>o</sup>\circ\cdotm
```
Therefore...

\$20 GVD DAD DAD DAD DRA DAD DAD DAD DAD DR \triangle \mathfrak{m} \mathfrak{m} \triangleleft \mathfrak{m} \mathfrak{m} \mathfrak{m} \Box

Interpretation 1: Spaces

 $x : T$ $x = x' : T$

Types - Spaces Terms - Points

Interpretation 2: Logic (Curry-Howard)

 W : P witness Proposition

w . $\dot{=} w'$: P Equality of witnesses

Types – Propositions Terms – Witnesses

• Inhabited propositions are "true"

• Uninhabited propositions are "false"

We informally say "assume that P " to mean "assume there is a term of type P''

This logic is proofrelevant: there may be distinct witnesses of the same proposition

 11 Martin-Löf Type Theory methods are constructed in the construction of the co

Interpretation

Type Theory: MLTT describes terms and types • Homotopy: MLTT describes *points* and *spaces* Logic: MLTT describes witnesses and propositions

By discussing these in a common language, we can

- identify similarities
- "transpose" concepts

Judgments, Contexts, and Types

Previously on Intro to HoTT...

Four Judgments of MLTT

 $x : T$

.

- Types (built up recursively, along with the terms-in-context)
- Terms-in-context (built up recursively, along with the types)
- **Contexts**
- Inference Rules
- **Derivations**

Contexts give MLTT "memory"

Suppose we have types T_1, \ldots, T_n . A context consists of a finite (possibly empty), ordered list of typing judgments

 x_1 : T_1 , x_2 : $T_2(x_1)$, ..., x_n : $T_n(x_1, \ldots, x_{n-1})$

• Type Theory: Declaring some typed variables • Logic : Assuming the truth of some propositions (with witnesses) • Homotopy: Declaring names for points of given spaces

Judgments-in-Context

Let Γ be a context.

 $\Gamma \vdash \overline{T}$ type $\Gamma \vdash x : T$ $\Gamma \vdash T$. $\dot{=} \overline{T}'$ type

 $Γ ⊢ J$

0 1 17 Martin-Löf Type Theory **17** Martin-Löf Type Theory Judgments, Contexts, and Types in the mltt HoTT

 $\begin{array}{c} \hline \textbf{I} & \textbf{I} \end{array}$ Judgn $\overline{}$
ts, Contexts, a

Inference Rules

An inference rule is of the form

$$
\underbrace{\mathcal{H}_1 \quad \mathcal{H}_2 \quad \cdots \quad \mathcal{H}_k}_{C}
$$

For instance,

$$
\cfrac{\Gamma\vdash T\;\mathrm{type}}{\Gamma\vdash T\doteq T\;\mathrm{type}}\qquad \cfrac{\Gamma\vdash T\;\mathrm{type}\quad \Gamma\vdash {\mathcal{J}}}{\Gamma,x:T\vdash {\mathcal{J}}}
$$

Example: Booleans

- \$ true
- > true : bool
- \$ false
- > false : bool
- \$ (if true
- \$ then 5
- \$ else 4)
- > 5
- \$ (if false then 5 else 4) > 4

Example: Booleans

The type of booleans will be denoted 2 and contain exactly two terms, $0₂$ and $1₂$. We'll formally express this using inference rules.

• Formation:

 $\overline{\Gamma \vdash 2}$ type

• Introduction:

 $\Gamma \vdash 0_2 : 2 \quad \Gamma \vdash 1_2 : 2$

Boolean Elimination & Computation (non-dependent)

• Elimination

$$
\frac{\Gamma\vdash \mathcal{T} \text{ type }\Gamma\vdash \rho_0: \mathcal{T}\quad \Gamma\vdash \rho_1: \mathcal{T}}{\Gamma, x: \mathbf{2}\vdash \text{ind}_\mathbf{2}(\rho_0, \rho_1, x): \mathcal{T}}
$$

• Computation:

$$
\frac{\Gamma \vdash T \text{ type } \Gamma \vdash p_0 : T \quad \Gamma \vdash p_1 : T}{\Gamma \vdash \text{ind}_2(p_0, p_1, 0_2) \doteq p_0 : T}
$$
\n
$$
\frac{\Gamma \vdash T \text{ type } \Gamma \vdash p_0 : T \quad \Gamma \vdash p_1 : T}{\Gamma \vdash \text{ind}_2(p_0, p_1, 1_2) \doteq p_1 : T}
$$

Example: Binary Products

Example: Binary Products

• Formation:

 $\Gamma \vdash A$ type $\Gamma \vdash B$ type $\Gamma \vdash A \times B$ type

• Introduction:

 $\Gamma \vdash x : A \quad \Gamma \vdash y : B$ $\Gamma \vdash (x, y) : A \times B$

(also need "Congruence Rule" to state that if $x \doteq x'$ and $y \doteq y'$, then $(x, y) \doteq (x', y'))$ • Elimination and Computation: Next time!

Check Your Understanding

- List the terms of type 2×2
- Given terms b_1 : 2 and b_2 : 2, use ind₂ to come up with
	- **a** term b_3 : 2 which is judgmentally equal to 1_2 if $b_1 = 0_2$, and 0_2 if $b_1 = 1_2$
	- **If** a term b_4 : 2 which is judgmentally equal to 12 if both b_1 and b_2 are judgmentally equal to $1₂$, and $0₂$ otherwise
	- **Example 12, and 02 determine**
 a term b_5 : 2 which is judgmentally equal to 1₂ if either $b_1 \doteq 1_2$ or $b_2 \doteq 1_2$, and 0₂ otherwise
- Verify that, up to a trivial relabelling, $(A \times B) \times C$ has the same terms as $A \times (B \times C)$
- Give the analogous introduction of a type 3 with exactly three terms.
- How many terms are there of type $2 \times 2 \times 3$?

Claim For any sets A, B,

$A \cap B \subseteq A$

i.e. $x \in A \cap B$ implies $x \in A$. *Proof.* Assume $x \in A \cap B$. Then we have $x \in A$ by definition of set intersection. So $x \in A$, as desired.

Claim For any sets A, B,

$A \cap B \subseteq A$

i.e. there is a witness of $(x \in A \cap B) \rightarrow (x \in A)$. *Proof.* Given $h : (x \in A \cap B)$, we have $h_1 : (x \in A)$ and $h_2 : (x \in B)$ by definition of set intersection. So output $h_1 : (x \in A)$.

In proof-relevant mathematics, a proof of $P\to Q$ is a transformation converting witnesses of P into witnesses of Q.

Modus Ponens

$h: P(x \in A \cap B)$ f: $P \to Q(x \in A \cap B) \to (x \in A)$ $f(h)$: $Q(x \in A)$

Lambda Expressions

$(\lambda h.h_1): (x\in A\cap B)\to (x\in A)$

Check Your Understanding

Write terms of the following types

- \bullet $P \rightarrow P$
- $P \rightarrow (Q \rightarrow P)$
- \bullet $(P \to (Q \to R)) \to ((P \to Q) \to (P \to R))$
- \bullet $(Q \to R) \to ((P \to Q) \to (P \to R))$

 \bullet $P \rightarrow P$

$\lambda h.h$

• $P \rightarrow (Q \rightarrow P)$

 $\lambda p.\lambda q.p$

Example: Arrow Types

• Formation:

 $\Gamma \vdash A$ type $\Gamma \vdash B$ type $\overline{\Gamma \vdash A \rightarrow B \text{ type}}$

• Introduction:

$$
\frac{\Gamma, x : A \vdash e(x) : B}{\Gamma \vdash (\lambda x. e(x)) : A \rightarrow B} \lambda
$$

(also need "Congruence Rule" to state that if $e(x) \doteq e'(x)$ for arbitrary x, then $(\lambda x. e(x)) \doteq (\lambda x. e'(x)))$

• Elimination:

$$
\frac{\Gamma\vdash f:A\to B}{\Gamma,x:A\vdash f(x):B}\text{ ev}
$$

Computation:

$$
\frac{\Gamma, x : A \vdash e(x) : B}{\Gamma, x : A \vdash (\lambda y. e(y))(x) \doteq e(x) : B} \beta
$$
\n
$$
\frac{\Gamma \vdash f : A \rightarrow B}{\Gamma \vdash (\lambda x. f(x)) \doteq f : A \rightarrow B} \eta
$$

Summary

Deduction in MLTT

Idea

$\begin{array}{r} \mathcal{H}_1 \quad \mathcal{H}_2 \quad \qquad \qquad \mathcal{H}_3 \quad \mathcal{J}_{2,2} \quad \mathcal{J}_{1,2} \quad \mathcal{J}_{3,3} \quad \mathcal{J}_{1,2} \end{array}$ \mathcal{H}_8 $\overline{\mathcal{J}_{3,1}}$ \mathcal{H}_9 $\overline{\mathcal{H}_{10}}$ $\overline{\mathcal{H}_{11}}$ $J_{2,3}$ $\overline{\mathcal{J}_{2,4}}$ $\begin{array}{|c|c|}\hline \mathcal{H}_5 & \mathcal{H}_6 \ \hline \mathcal{J}_{1,3} & \hline \end{array}$ \mathcal{H}_7 $\overline{\mathcal{J}_{1,4}}$ $\overline{\mathcal{J}_{1.5}}$ \mathcal{C}

is a deduction of

$$
\frac{\mathcal{H}_1 \quad \mathcal{H}_2 \quad \dots \mathcal{H}_{11}}{\mathcal{C}}
$$

Deduction in MLTT

Idea

A derived rule

$$
\frac{\mathcal{H}_1 \quad \mathcal{H}_2 \quad \dots \quad \mathcal{H}_k}{\mathcal{C}}
$$

can

- Be used to derive more rules
- Serve as a formally-proven theorem about how our type theory works We'll need some simple rules to make our deduction system work.

Judgmental Equality is an equivalence relation

$$
\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \doteq A \text{ type}} \quad \frac{\Gamma \vdash A \doteq B \text{ type}}{\Gamma \vdash B \doteq A \text{ type}} \quad \frac{\Gamma \vdash A \doteq B \text{ type} \quad \Gamma \vdash B \doteq C \text{ type}}{\Gamma \vdash A \doteq C \text{ type}}
$$

$\mathsf{\Gamma} \vdash a : A$ $\frac{\Gamma \vdash a : A}{\Gamma \vdash a \doteq a : A}$ $\frac{\Gamma \vdash a \doteq b : A}{\Gamma \vdash b \doteq a : A}$ $\frac{\Gamma \vdash a \doteq b : A}{\Gamma \vdash b \doteq a : A}$ $\frac{\Gamma \vdash a \doteq b : A \quad \Gamma \vdash b \doteq c : A}{\Gamma \vdash a \doteq c : A}$ $\frac{D}{\Gamma \vdash a \doteq c : A}$

Variable Rule and Weakening

$$
\frac{\Gamma \vdash A \text{ type}}{\Gamma, x : A \vdash x : A} \delta
$$

$$
\frac{\Gamma \vdash A \text{ type } \Gamma, \Delta \vdash \mathcal{J}}{\Gamma, x : A, \Delta \vdash \mathcal{J}} W
$$

Allows us to define the constant type family B over A : $\Gamma \vdash A$ type $\Gamma \vdash B$ type $\frac{P}{\Gamma, x : A \vdash B \text{ type}}$ W

Moving variables around

• Variable Conversion Rule

$$
\frac{\Gamma \vdash A \doteq A' \quad \Gamma, x:A, \Delta \vdash \mathcal{J}}{\Gamma, x:A', \Delta \vdash \mathcal{J}}
$$

Substitution

Moving variables around

• Substitution Rule

$$
\frac{\Gamma\vdash a:A\quad \Gamma,x:A,\Delta\vdash \mathcal{J}}{\Gamma,\Delta[a/x]\vdash \mathcal{J}[a/x]} S
$$

• Substitution Congruence Rules

$$
\frac{\Gamma \vdash a \doteq a' : A \quad \Gamma, x : A, \Delta \vdash B \text{ type}}{\Gamma, \Delta[a/x] \vdash B[a/x] \doteq B[a'/x] \text{ type}}
$$
\n
$$
\frac{\Gamma \vdash a \doteq a' : A \quad \Gamma, x : A, \Delta \vdash b : B}{\Gamma, \Delta[a/x] \vdash b[a/x] \doteq b[a'/x] : B[a/x]}
$$

Derived Structural Rules

• Substituting with a fresh variable

$$
\frac{\Gamma, x : A, \Delta \vdash \mathcal{J}}{\Gamma, x' : A, \Delta[x'/x] \vdash \mathcal{J}[x'/x]} x'/x
$$

• Interchange rule

$$
\frac{\Gamma \vdash B \text{ type } \Gamma, x:A, y:B, \Delta \vdash \mathcal{J}}{\Gamma, y:B, x:A, \Delta \vdash \mathcal{J}}
$$

Derivation

$2 \rightarrow 2$

 $2 \rightarrow 2$

 $\Gamma \vdash \textsf{2 type}$ $\frac{1}{\Gamma, x : 2 \vdash x : 2}$ $\Gamma \vdash (\lambda x.x) : 2 \rightarrow 2^{\lambda}$

$$
\frac{\frac{\overline{\Gamma \vdash 1_2 : 2}}{\Gamma, x : 2 \vdash 1_2 : 2} W}{\Gamma \vdash (\lambda x. 1_2) : 2 \rightarrow 2} \lambda
$$

$$
\frac{\overline{\Gamma \vdash 2\;\mathrm{type}} \quad \overline{\Gamma \vdash 1_2 : 2} \quad \overline{\Gamma \vdash 0_2 : 2}}{\Gamma \vdash (\lambda x.\mathrm{ind}_2(1_2,0_2,x)) : 2} \lambda
$$

Appending Definitions To Derivations

$$
\frac{\mathcal{H}_1 \quad \mathcal{H}_2 \quad \cdots \quad \mathcal{H}_k}{\Gamma \vdash c : A} \qquad \frac{\mathcal{H}_1 \quad \mathcal{H}_2 \quad \cdots \quad \mathcal{H}_k}{\Gamma \vdash c \doteq a : A}
$$

Deduction in MLTT

Example: The Identity Function

$$
\frac{\Gamma \vdash A \text{ type}}{\Gamma, x : A \vdash x : A} \delta
$$
\n
$$
\frac{\Gamma \vdash (\lambda x.x) : A \rightarrow A}{\Gamma \vdash \text{id}_A := (\lambda x.x) : A \rightarrow A}
$$

Example: Composition

comp :=
$$
(\lambda g.\lambda f.\lambda x.g(f(x)))
$$
 : $(B \to C) \to (A \to B) \to (A \to C)$

(See book for formal derivation)

$$
g\circ f:=((\mathsf{comp}\;g)\;f)\;:\;A\to C
$$

Example: The Left Unit Law

Check Your Understanding Derive:

$$
\frac{\Gamma\vdash f:A\to B}{\Gamma,x:A\vdash \mathsf{id}_B(f(x))\doteq f(x):B} \ (a)
$$

 $Then...$

$$
\frac{\Gamma \vdash f : A \to B}{\Gamma, x : A \vdash \text{id}_B(f(x)) \doteq f(x)} \quad (a)
$$
\n
$$
\frac{\Gamma \vdash f : A \to B}{\Gamma \vdash \lambda x. \text{id}_B(f(x)) \doteq \lambda x. f(x)} \quad \frac{\Gamma \vdash f : A \to B}{\Gamma \vdash \lambda x. f(x) \doteq f} \eta
$$
\n
$$
\Gamma \vdash \text{id}_B \circ f \doteq f
$$

How we'll use MLTT

Blending with interpretations

Moving forward, we'll be more casual about interpretations, switching between them as suits our purposes

Informal Type Theory

The formal framework of contexts, type judgments, etc. can often be too clunky and get in the way. So we'll work in an informal style, e.g.

- The context is usually implicit
- "Let x be of type T " (and similar) means " $x : T$ is in our context"
- \bullet "Assume T " means "Assume T is inhabited"
- "Let X be a gadget" means "Let X be a term (of the appropriate type) such that is gadget (X) is inhabited"
- We'll have informal ways of reading (and using) the formal inference rules we use to define our types

Formalization

A key benefit of HoTT is its amenability to formalization: even though we usually work informally, our informal methods closely mirror our formal rules so it's easily to "translate" into formal derivations.

Interactice proof assistants (like Agda or Coq) allow us to write our formal proofs in a computer-readable format, so the computer can check our proofs and verify their correctness!

More discussion of type families Dependent Types & their interpretations "Official" rules for $2, \times$, etc. More types

Thanks for watching!

Designed, written, and performed by Jacob Neumann

Based on the textbook Introduction to Homotopy Type Theory by Egbert Rijke

Next video

Music:

"Wholesome" and "Fluidscape" Kevin MacLeod (incompetech.com) Licensed under Creative Commons: By Attribution 3.0 License http://creativecommons.org/licenses/by/3.0/

Full lecture

Next video

Except where noted, the contents of this video are licensed under the Creative Commons Attribution-ShareAlike 4.0 International License https://creativecommons.org/licenses/by-sa/4.0/

Full lecture