

Intro to Homotopy Type Theory, No. 2

Dress Coding

Formalities & Informalities

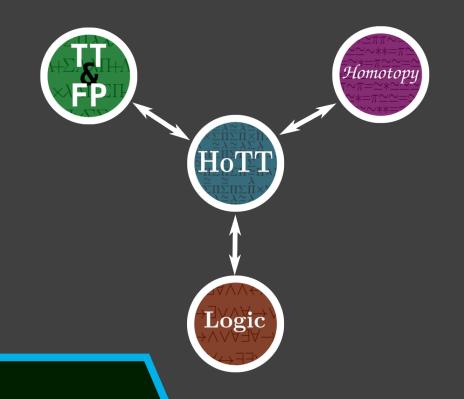
1

Formalities & Informalities

0 HoTT Workflows

Previously...

Why HoTT? What does HoTT mean?



HoTT Workflows

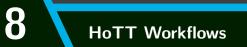
How do we do HoTT?

- Written for humans, in sentences and paragraphs
- Primary way of doing mathematics
- Key innovation of the HoTT/UF project: developing informal type theory
- Informal \neq unrigorous

- Written in a computer proof assistant (e.g. Agda, Coq, Lean)
- Correctness can be checked automatically
- Central motivation for HoTT: informal theory is *amenable* to formalization in a computer proof assistant

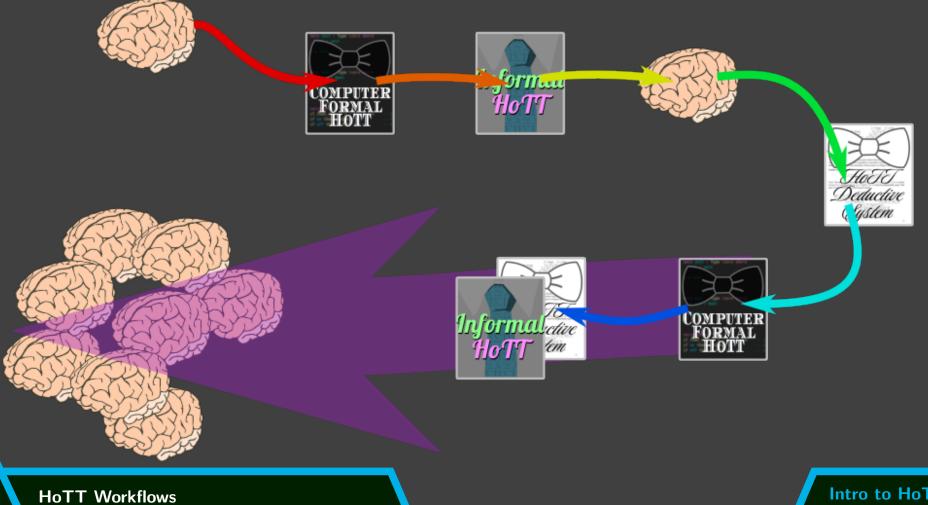
- Written in the form of inference rules, e.g. $\frac{\Gamma \vdash f : A \rightarrow B \quad \Gamma \vdash x : A}{\Gamma \vdash f(x) : B}$
- Unwieldy as a formalization system, but often a convenient for
 - ► precisely stating rules
 - reasoning about metatheory
 - figuring out how to formalize in a computer

HoTT Workflow Suggestions



HoTT Workflow Suggestions

9



How do we *do* HoTT?

10

\downarrow Links in description! \downarrow

Declare-It-Yourself

Declaring new terms in Agda



${f 1}$ is a type with exactly one term, $\star:{f 1}$

ProgrammingHomotopyLogicType ofContractibleUniquely-witnessedzero-tuples(single-point) spacetrue proposition

B Declare-It-Yourself

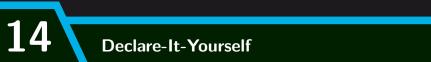
01-simpleTT.agda

10 data unit : Type lzero where

11 star : unit

13 1 = unit

12



Type is a *hierarchy of universes*, parametrized by a type Level. Level is basically the natural numbers: lzero is level 0, lsuc is the successor operation, and \sqcup is the maximum operator. So there are as many **Type** levels as there are natural numbers.

We have an infinite hierarchy to avoid Russell-paradox-esque problems with having a *type of types*. For each ℓ : Level,

1 (Type ℓ) : Type (lsuc ℓ)

so no type is a term of itself.

The **Type** universes are cumulative: if A : Type ℓ , then A can also be viewed as an element of Type ℓ' for every ℓ' :Level higher than ℓ . So if we say A : **Type** lzero, this means that A is a type at *every* level.

Declare-It-Yourself

00-preamble.agda

4

6

module 00-preamble where

₅ open import Agda.Primitive using (Level; lzero; lsuc; _□) public

```
variable \ell : Level
```

```
<sup>9</sup> Type : (\ell : Level) \rightarrow Set (lsuc \ell)

<sup>10</sup> Type \ell = Set \ell
```

Declare-It-Yourself

Judgments and Inference Rules

$$\frac{\mathcal{J}_1 \quad \mathcal{J}_2 \quad \dots \quad \mathcal{J}_n}{\mathcal{C}}$$

- "If $\mathcal{J}_1, \mathcal{J}_2, \ldots, \mathcal{J}_n$ hold, \mathcal{C} follows"
- $\mathcal{J}_1, \mathcal{J}_2, \ldots, \mathcal{J}_n$, and \mathcal{C} are judgments

A type a : A

• Can be stacked atop each other to make *deduction trees*

Formation

Introduction

1 type

* : **1**

• Formation Rule

- ► Assert the existence of the type
- Introduction Rule(s)
 - Specify how to give terms of the type
- Elimination Rule
- Computation Rule(s)
- Coherence Rule(s)

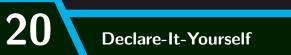
The Formation Rule and Introduction Rule are achieved in Computer Formal HoTT (e.g. in Agda) by the type delcaration

01-simpleTT.agda

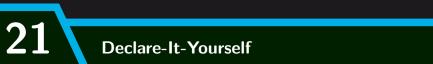
- 9 -- 1-Formation & 1-Introduction
- 10 data unit : Type lzero where

11 star : unit

This declares the type into existence (Formation) and declares how to build terms of the type (Introduction)



Context-Dependence



A **context** is a finite list of typed variable names

$$x_1 : A_1, x_2 : A_2, \ldots, x_n : A_n$$

We use letters like Γ and Δ to denote arbitrary contexts.

A judgment-in-context has the form

 $\Gamma\vdash \mathcal{J}$

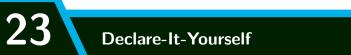
where \mathcal{J} might contain variables from Γ .

Formation

Introduction

$\Gamma \vdash \mathbf{1}$ type

 $\Gamma \vdash \star : \mathbf{1}$



2 Judgmental Equality

$3+3 \doteq 6$

24

Judgmental Equality

Intro to HoTT, No. 2

T₁ and T₂ are judgmentally equal types

t₁ and t₂ are judgmentally equal terms of type T

 $T_1 \doteq T_2$

$t_1 \doteq t_2$: T

Judgmental Equality – Types & Terms

Judgmental Equality – Types & Terms

$\Gamma \vdash T_1 \doteq T_2$ $\Gamma \vdash t_1 \doteq t_2 : T$

In context Γ , T_1 and Γ In context Γ , t_1 and t_2 T_2 are judgmentally are judgmentally equal equal types terms of type T

"HoTT is a programming language"

Confluence

26 Judgmental Equality



Computing with Agda

27 Judgmental Equality

Compute to the same thing ^{6+6 ÷ 7+5} Equal by definition ▶ helloWord ≐ "Hello"

20

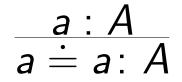
Judgmental Equality Notations



29

Judgmental Equality is an equivalence relation

 $\frac{A \text{ type}}{A \doteq A}$



A	•	В
В	•	A

 $\frac{a \doteq a' : A}{a' \doteq a : A}$

 $\frac{A \doteq B \quad \Gamma \vdash B \doteq C}{A \doteq C}$

 $\frac{a \doteq a' : A \quad a' \doteq a'' : A}{a \doteq a'' : A}$

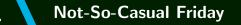
Judgmental Equality is an equivalence relation

$\frac{\Gamma \vdash A \doteq B \quad \Gamma \vdash B \doteq C}{\Gamma \vdash A \doteq C} \quad \frac{\Gamma \vdash a \doteq a' \colon A \quad \Gamma \vdash a' \doteq a'' \colon A}{\Gamma \vdash a \doteq a'' \colon A}$

3 Not-So-Casual Friday

We define the type of *days of the week* to be a type **day**, equipped with exactly seven terms

Sunday, Monday, ..., Saturday : day



day type

(**day**-Formation)

Sunday: day Monday: day

(**day**-Introduction)

Tuesday: day Wednesday: day

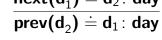
Thursday: day Friday: day

Saturday: day

For each d: day, we have next(d): day and prev(d): day representing the next and previous day, respectively. For instance, next(Tuesday) = Wednesday = prev(Thursday)

$$\frac{d: day}{next(d): day} \qquad \frac{d: day}{prev(d): day}$$

 $\begin{array}{ll} \hline next(Sunday) \doteq Monday: day & \hline next(Monday) \doteq Tuesday: day & \hline next(Tuesday) \doteq Wednesday: day \\ \hline next(Wednesday) \doteq Thursday: day & \hline next(Thursday) \doteq Friday: day & \hline next(Friday) \doteq Saturday: day \\ \hline \hline next(Saturday) \doteq Sunday: day & \\ \hline next(d_1) \doteq d_2: day & \end{array}$



8

11

⁹ data day : Type lzero where 10 Sunday Monday Tuesday Wednesday Thursday Friday Saturday : day

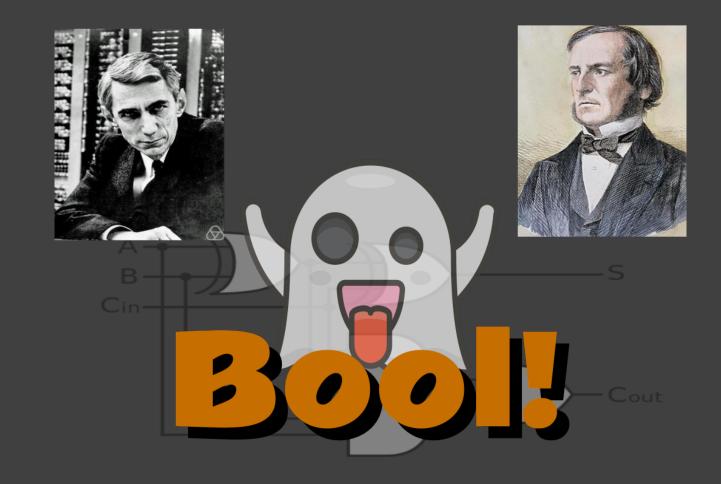
```
12 next : day \rightarrow day
13 next Sunday = Monday
14 next Monday = Tuesday
15 next Tuesday = Wednesday
16 next Wednesday = Thursday
17 next Thursday = Friday
                       urday
   Not-So-Casual Friday
```

next(next(next(Tuesday))) \doteq next(next(Wednesday)) \doteq next(Thursday) \doteq Friday \doteq prev(Saturday)

Indeed...

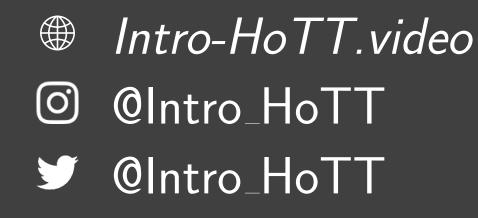


- Think about what structure/behavior you want to describe rigorously/mathematically
- 2 Write it up informally (or formally in a computer proof assistant, or as inference rules)
- **3** Try (un)formalizing it into other styles of HoTT, to better understand it & to check your work
- 4 Share!



Designed, written, and performed by Jacob Neumann

Except where noted (see description for attributions), the contents of this video are licensed under the Creative Commons Attribution-ShareAlike 4.0 International License https://creativecommons.org/licenses/by-sa/4.0/



Intro to Homotopy Type Theory

Next video:

Coming soon!