
Formalities &
Informalities

Formalities &
Informalities

Formalities &
Informalities

Formalities &
Informalities

Intro to Homotopy Type Theory, No. 2

Dress Coding

1 Formalities & Informalities Intro to HoTT, No. 2

2 Formalities & Informalities Intro to HoTT, No. 2

0 HoTT Workflows

Previously. . .

Why HoTT?
What does HoTT mean?

3 HoTT Workflows Intro to HoTT, No. 2

How do we do HoTT?

4 HoTT Workflows Intro to HoTT, No. 2

• Written for humans, in
sentences and paragraphs

• Primary way of doing
mathematics

• Key innovation of the
HoTT/UF project:
developing informal type
theory

• Informal 6= unrigorous

5 HoTT Workflows Intro to HoTT, No. 2

• Written in a computer
proof assistant (e.g. Agda,
Coq, Lean)

• Correctness can be checked
automatically

• Central motivation for
HoTT: informal theory is
amenable to formalization
in a computer proof
assistant

6 HoTT Workflows Intro to HoTT, No. 2

• Written in the form of
inference rules, e.g.

Γ ` f : A→ B Γ ` x : A
Γ ` f (x) : B

• Unwieldy as a formalization
system, but often a
convenient for
I precisely stating rules
I reasoning about metatheory
I figuring out how to formalize

in a computer

7 HoTT Workflows Intro to HoTT, No. 2

HoTT Workflow Suggestions

8 HoTT Workflows Intro to HoTT, No. 2

HoTT Workflow Suggestions

9 HoTT Workflows Intro to HoTT, No. 2

How do we do HoTT?

10 HoTT Workflows Intro to HoTT, No. 2

The formalization we’ll use

↓ Links in description! ↓

11 HoTT Workflows Intro to HoTT, No. 2

1 Declare-It-Yourself

Declaring new terms in Agda

12 Declare-It-Yourself Intro to HoTT, No. 2

Review: Informal discription of 1

1 is a type with exactly one term, ? : 1

Programming

Type of
zero-tuples

Homotopy

Contractible
(single-point) space

Logic

Uniquely-witnessed
true proposition

13 Declare-It-Yourself Intro to HoTT, No. 2

Declaring new types in Agda

01-simpleTT.agda

10 data unit : Type lzero where

11 star : unit

12

13 1 = unit

14 Declare-It-Yourself Intro to HoTT, No. 2

Optional: Universe Levels

Type is a hierarchy of universes, parametrized by a type Level. Level is
basically the natural numbers: lzero is level 0, lsuc is the successor operation,
and t is the maximum operator. So there are as many Type levels as there are
natural numbers.
We have an infinite hierarchy to avoid Russell-paradox-esque problems with
having a type of types. For each ` : Level,

1 (Type `) : Type (lsuc `)

so no type is a term of itself.

The Type universes are cumulative: if A : Type `, then A can also be viewed

as an element of Type `′ for every `′:Level higher than `. So if we say A :

Type lzero, this means that A is a type at every level.

15 Declare-It-Yourself Intro to HoTT, No. 2

00-preamble.agda

3 module 00-preamble where

4

5 open import Agda.Primitive using (Level;

lzero; lsuc; _t_) public

6

7 variable ` : Level

8

9 Type : (` : Level) → Set (lsuc `)
10 Type ` = Set `

16 Declare-It-Yourself Intro to HoTT, No. 2

Judgments and Inference Rules

J1 J2 . . . Jn
C

• “If J1,J2, . . . ,Jn hold, C follows”

• J1,J2, . . . ,Jn, and C are judgments

A type a : A

• Can be stacked atop each other to make deduction trees

17 Declare-It-Yourself Intro to HoTT, No. 2

1 Formation & Introduction

Formation

1 type

Introduction

? : 1

18 Declare-It-Yourself Intro to HoTT, No. 2

Type definition checklist

• Formation Rule
I Assert the existence of the type

• Introduction Rule(s)
I Specify how to give terms of the type

• Elimination Rule

• Computation Rule(s)

• Coherence Rule(s)

19 Declare-It-Yourself Intro to HoTT, No. 2

Formation and Introduction

The Formation Rule and Introduction Rule are achieved in
Computer Formal HoTT (e.g. in Agda) by the type delcaration
01-simpleTT.agda

9 -- 1-Formation & 1-Introduction

10 data unit : Type lzero where

11 star : unit

This declares the type into existence (Formation) and declares how
to build terms of the type (Introduction)

20 Declare-It-Yourself Intro to HoTT, No. 2

Context-Dependence

21 Declare-It-Yourself Intro to HoTT, No. 2

Contexts

A context is a finite list of typed variable names

x1 : A1, x2 : A2, . . . , xn : An

We use letters like Γ and ∆ to denote arbitrary contexts.

A judgment-in-context has the form

Γ ` J
where J might contain variables from Γ.

22 Declare-It-Yourself Intro to HoTT, No. 2

1 Formation & Introduction

Formation

Γ ` 1 type

Introduction

Γ ` ? : 1

23 Declare-It-Yourself Intro to HoTT, No. 2

2 Judgmental Equality

3 + 3
.

= 6

24 Judgmental Equality Intro to HoTT, No. 2

Judgmental Equality – Types & Terms

T1
.

= T2

T1 and T2 are
judgmentally equal

types

t1
.

= t2 : T

t1 and t2 are
judgmentally equal

terms of type T

25 Judgmental Equality Intro to HoTT, No. 2

Judgmental Equality – Types & Terms

Γ ` T1
.

= T2

In context Γ, T1 and
T2 are judgmentally

equal types

Γ ` t1
.

= t2 : T

In context Γ, t1 and t2

are judgmentally equal
terms of type T

25 Judgmental Equality Intro to HoTT, No. 2

Confluence

“HoTT is a programming language”

26 Judgmental Equality Intro to HoTT, No. 2

Confluence

26 Judgmental Equality Intro to HoTT, No. 2

Confluence

6+6 7+5

12

26 Judgmental Equality Intro to HoTT, No. 2

Computing with Agda

27 Judgmental Equality Intro to HoTT, No. 2

Computational Judgmental Equality

• Compute to the same thing
I 6+6

.
= 7+5

• Equal by definition
I helloWord

.
= "Hello"

28 Judgmental Equality Intro to HoTT, No. 2

Judgmental Equality Notations

.
= ≡ =

29 Judgmental Equality Intro to HoTT, No. 2

Judgmental Equality is an equivalence relation

A type
A

.
= A

A
.

= B
B

.
= A

A
.

= B Γ ` B
.

= C
A

.
= C

a : A
a
.

= a : A

a
.

= a′ : A
a′

.
= a : A

a
.

= a′ : A a′
.

= a′′ : A
a
.

= a′′ : A

30 Judgmental Equality Intro to HoTT, No. 2

Judgmental Equality is an equivalence relation

Γ ` A type
Γ ` A

.
= A

Γ ` A
.

= B
Γ ` B

.
= A

Γ ` A
.

= B Γ ` B
.

= C
Γ ` A

.
= C

Γ ` a : A
Γ ` a

.
= a : A

Γ ` a
.

= a′ : A
Γ ` a′

.
= a : A

Γ ` a
.

= a′ : A Γ ` a′
.

= a′′ : A
Γ ` a

.
= a′′ : A

30 Judgmental Equality Intro to HoTT, No. 2

3 Not-So-Casual Friday

We define the type of days of the week to be a type day, equipped
with exactly seven terms

Sunday,Monday, . . . ,Saturday : day

31 Not-So-Casual Friday Intro to HoTT, No. 2

day type (day-Formation)

Sunday : day Monday : day (day-Introduction)

Tuesday : day Wednesday : day

Thursday : day Friday : day

Saturday : day

32 Not-So-Casual Friday Intro to HoTT, No. 2

For each d : day, we have

next(d) : day and prev(d) : day

representing the next and previous day, respectively. For instance,

next(Tuesday)
.

= Wednesday
.

= prev(Thursday)

33 Not-So-Casual Friday Intro to HoTT, No. 2

d : day
next(d) : day

d : day
prev(d) : day

next(Sunday)
.
= Monday : day next(Monday)

.
= Tuesday : day next(Tuesday)

.
= Wednesday : day

next(Wednesday)
.
= Thursday : day next(Thursday)

.
= Friday : day next(Friday)

.
= Saturday : day

next(Saturday)
.
= Sunday : day

next(d1)
.
= d2 : day

prev(d2)
.
= d1 : day

34 Not-So-Casual Friday Intro to HoTT, No. 2

example-daysOfWeek.agda

8

9 data day : Type lzero where

10 Sunday Monday Tuesday Wednesday Thursday

Friday Saturday : day

11

12 next : day → day

13 next Sunday = Monday

14 next Monday = Tuesday

15 next Tuesday = Wednesday

16 next Wednesday = Thursday

17 next Thursday = Friday

18 next Friday = Saturday35 Not-So-Casual Friday Intro to HoTT, No. 2

Calculation

next(next(next(Tuesday)))
.

= next(next(Wednesday))
.

= next(Thursday)
.

= Friday
.

= prev(Saturday)

36 Not-So-Casual Friday Intro to HoTT, No. 2

Indeed. . .

37 Not-So-Casual Friday Intro to HoTT, No. 2

Summary: How to do HoTT

1 Think about what structure/behavior you want to describe
rigorously/mathematically

2 Write it up informally (or formally in a computer proof
assistant, or as inference rules)

3 Try (un)formalizing it into other styles of HoTT, to better
understand it & to check your work

4 Share!

Next Time

Designed, written, and performed by
Jacob Neumann

Except where noted (see description for attributions), the contents
of this video are licensed under the Creative Commons

Attribution-ShareAlike 4.0 International License
https://creativecommons.org/licenses/by-sa/4.0/

Intro-HoTT.video

@Intro HoTT

@Intro HoTT

Next video:

Coming soon!

	HoTT Workflows
	Declare-It-Yourself
	Judgmental Equality
	Not-So-Casual Friday

