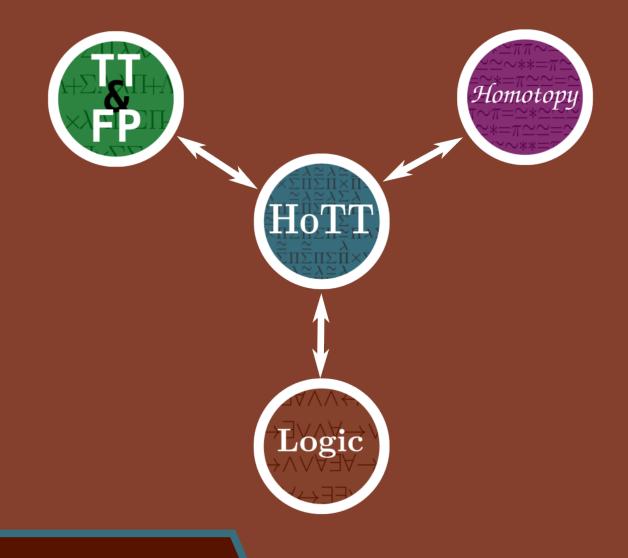


Intro to Homotopy Type Theory, No. 1



19 Logic

Theorems are types? Proofs are terms? ✓ What's homotopy theory? What's its connection to homotopy *type* theory?

Constructive vs. Nonconstructive

Is there an x > 2 such that 2^x = x²? Nonconstructive: There must be, because... Constructive: Yeah, 4

Key Point: HoTT will be built around constructive

logic

Logic Interpretation of HoTT:

Types are (constructive) propositions Terms are proofs/witnesses t : T means t is a witness to the truth of T Inhabitedness

"T is inhabited" = there are terms of type T

"*T* is uninhabited" = there are *no* terms of type *T*

(this is the constructive analogue of the distinction between "empty" and "nonempty")

Reminder for time-travellers:

	Written Prose	Agda
Judgmental Equality		
Propositional Equality		=

Proof Relevance

There can be multiple distinct proofs/witnesses of the same proposition

(Note that constructive logic does not have to be proof relevant)

x such that
$$2^x = x^2$$
:

w :
$$\exists [x \in \mathbb{N}] \quad 2 \quad x \equiv x \quad 2$$

$$w = 4$$
 , refl

$$v = 2$$
, refl

multiple distinct proofs/witnesses of the same proposition

Logic

1

- 1 represents a true proposition, because it's inhabited
 It's *uniquely* inhabited: there's exactly one term of type 1, i.e. exactly one witness of its truth
- We'll use 1/contractibility to capture the mathematical notion of "unique existence"