

The Heart and Soul of Modern Mathematics

Set Theory

1

Т

Set Theory

• Primarily originated in 19th century, underwent substantial development in 20th century

- Primarily originated in 19th century, underwent substantial development in 20th century
- Dominant foundational framework for mathematics

- Primarily originated in 19th century, underwent substantial development in 20th century
- Dominant foundational framework for mathematics
- Formally axiomatized

- Primarily originated in 19th century, underwent substantial development in 20th century
- Dominant foundational framework for mathematics
- Formally axiomatized
 - ▶ Zermelo-Frankel axioms (± some axioms)

Set Theory

- Primarily originated in 19th century, underwent substantial development in 20th century
- Dominant foundational framework for mathematics
- Formally axiomatized
 - ► Zermelo-Frankel axioms (± some axioms)

Category Theory

- Primarily originated in 19th century, underwent substantial development in 20th century
- Dominant foundational framework for mathematics
- Formally axiomatized
 - ► Zermelo-Frankel axioms (± some axioms)
- **Category Theory**
 - Emerged in the mid 20th-century

Set Theory

- Primarily originated in 19th century, underwent substantial development in 20th century
- Dominant foundational framework for mathematics
- Formally axiomatized
 - > Zermelo-Frankel axioms (\pm some axioms)

Category Theory

- Emerged in the mid 20th-century
- Provides a different language for studying mathematical structures

Set Theory

- Primarily originated in 19th century, underwent substantial development in 20th century
- Dominant foundational framework for mathematics
- Formally axiomatized
 - > Zermelo-Frankel axioms (\pm some axioms)

Category Theory

- Emerged in the mid 20th-century
- Provides a different language for studying mathematical structures
- Can also serve as a foundational framework

Lawvere's **Elementary Theory of the Category of Sets** (1964) proposes that we study the *category of sets*, i.e. use the tools & mindset of category theory to do set theory.

Lawvere's **Elementary Theory of the Category of Sets** (1964) proposes that we study the *category of sets*, i.e. use the tools & mindset of category theory to do set theory.

This video: Explain the basic theory of sets

Lawvere's **Elementary Theory of the Category of Sets** (1964) proposes that we study the *category of sets*, i.e. use the tools & mindset of category theory to do set theory.

This video: Explain the basic theory of sets – *as a category*, but without any explicit category theory language

Lawvere's **Elementary Theory of the Category of Sets** (1964) proposes that we study the *category of sets*, i.e. use the tools & mindset of category theory to do set theory.

This video: Explain the basic theory of sets – *as a category*, but without any explicit category theory language **Next video:** Introduce category theory and "officially" define the category of sets

Lawvere's **Elementary Theory of the Category of Sets** (1964) proposes that we study the *category of sets*, i.e. use the tools & mindset of category theory to do set theory.

This video: Explain the basic theory of sets – *as a category*, but without any explicit category theory language **Next video:** Introduce category theory and "officially" define the category of sets **Future videos:** Study other interesting categories, define abstract category-theoretic "structure", build up the basics of category theory

0 The Universe of Sets

Sets

$\{0,5,7,4\}$ is a set

$\{0,5,7,4\}$ is a set $0\in\{0,5,7,4\}$

$\begin{array}{l} \{0,5,7,4\} \text{ is a set} \\ 0 \in \{0,5,7,4\} \\ 7 \in \{0,5,7,4\} \end{array}$

$\begin{array}{l} \{0,5,7,4\} \text{ is a set} \\ 0 \in \{0,5,7,4\} \\ 7 \in \{0,5,7,4\} \\ 3 \not\in \{0,5,7,4\} \end{array}$

 $\begin{array}{l} \{0,5,7,4\} \text{ is a set} \\ 0 \in \{0,5,7,4\} \\ 7 \in \{0,5,7,4\} \\ 3 \not\in \{0,5,7,4\} \end{array}$

 $\{0,5,7,4\}=\{4,5,0,7\}$

 $\begin{array}{l} \{0,5,7,4\} \text{ is a set} \\ 0 \in \{0,5,7,4\} \\ 7 \in \{0,5,7,4\} \\ 3 \not\in \{0,5,7,4\} \end{array}$

$$\{0,5,7,4\} = \{4,5,0,7\} \ \{0,5,7,4\} = \{4,5,5,5,0,7,5\}$$

Informally, a **set** is a collection of *elements* (which could be anything, including other sets)

Informally, a **set** is a collection of *elements* (which could be anything, including other sets) A **set** X is defined by the **elements** which are **in** X.

4

Informally, a set is a collection of *elements* (which could be anything, including other sets) A set X is defined by the elements which are in X. We write $x \in X$ to mean that x is in X, and $x \notin X$ to mean that x is not in X.

4

Informally, a set is a collection of *elements* (which could be anything, including other sets) A set X is defined by the **elements** which are in X. We write $x \in X$ to mean that x is in X, and $x \notin X$ to mean that x is not in X. If two sets have the exact same elements ($x \in X \iff x \in Y$), they are the same (X = Y).

A **function** *f* is given by:

A function f is given by:

• A set dom(*f*), called the **domain** of *f*

A **function** *f* is given by:

- A set dom(*f*), called the **domain** of *f*
- A set cod(f), called the **codomain** of f

A **function** *f* is given by:

- A set dom(*f*), called the **domain** of *f*
- A set cod(f), called the **codomain** of f'
- An assignment of each element x ∈ dom(f) to an element
 f(x) ∈ cod(f)

6

A **function** *f* is given by:

- A set dom(f), called the **domain** of f
- A set cod(f), called the **codomain** of f
- An assignment of each element x ∈ dom(f) to an element
 f(x) ∈ cod(f)

We'll write $f : X \to Y$ to indicate that f is a function whose domain is X and whose codomain is Y.

6

6

A **function** *f* is given by:

- A set dom(f), called the **domain** of f
- A set cod(f), called the **codomain** of f
- An assignment of each element x ∈ dom(f) to an element
 f(x) ∈ cod(f)

We'll write $f : X \to Y$ to indicate that f is a function whose domain is X and whose codomain is Y. We'll sometimes write $f : x \mapsto y$ to mean that y = f(x).

Lambda Notation

To easily refer to & define functions, we'll make use of λ -notation:

Lambda Notation

To easily refer to & define functions, we'll make use of λ -notation: if we define

$$f = (\lambda x. e(x)) : X \to Y$$

then, for any $z \in X$, f(z) is obtained by "evaluating" the "expression" e(z).

$(\lambda x.x + x) : \mathbb{R} \to \mathbb{R}$

$$egin{aligned} &(\lambda x.x+x):\mathbb{R}
ightarrow\mathbb{R}\ &(\lambda x.x+x) \end{aligned} \end{aligned}$$

$$egin{aligned} &(\lambda x.x+x):\mathbb{R}
ightarrow\mathbb{R}\ &(\lambda x.x+x)(4)\ &=&4+4 \end{aligned}$$

$$egin{aligned} & (\lambda x.x+x):\mathbb{R}
ightarrow\mathbb{R}\ & (\lambda x.x+x)(4)\ & = & 4+4\ & = & 8 \end{aligned}$$

 $egin{aligned} & (\lambda x.x+x):\mathbb{R}
ightarrow\mathbb{R}\ & (\lambda x.x+x)(4)\ & = & 4+4\ & = & 8\ & (\lambda x.x+x)(2.1) \end{aligned}$

$$egin{aligned} &(\lambda x.x+x):\mathbb{R}
ightarrow\mathbb{R}\ &(\lambda x.x+x)(4)\ &=&4+4\ &=&8\ &(\lambda x.x+x)(2.1)\ &=&2.1+2.1 \end{aligned}$$

Lambda Practice

$$egin{aligned} & (\lambda x.x+x): \mathbb{R} o \mathbb{R} \ & (\lambda x.x+x)(4) \ &= & 4+4 \ &= & 8 \ & (\lambda x.x+x)(2.1) \ &= & 2.1+2.1 \ &= & 4.2 \end{aligned}$$

8

$$(\lambda(x,y).\sqrt{x^2+y^2}):\mathbb{R}^2 o [0,\infty)$$

$$egin{aligned} &(\lambda(x,y).\sqrt{x^2+y^2}):\mathbb{R}^2 o [0,\infty)\ &(\lambda(x,y).\sqrt{x^2+y^2})(3,4) \end{aligned}$$

$$egin{aligned} & (\lambda(x,y).\sqrt{x^2+y^2}): \mathbb{R}^2 o [0,\infty) \ & (\lambda(x,y).\sqrt{x^2+y^2})(3,4) \ & = \sqrt{3^2+4^2} \end{aligned}$$

$$\begin{aligned} &(\lambda(x,y).\sqrt{x^2+y^2}): \mathbb{R}^2 \to [0,\infty) \\ &(\lambda(x,y).\sqrt{x^2+y^2})(3,4) \\ &= \sqrt{3^2+4^2} \\ &= 5 \end{aligned}$$

$(\lambda n. \text{ if } n \text{ is even then } 1 \text{ else } 0) : \mathbb{N} \to \{0, 1\}$

$(\lambda n. \text{ if } n \text{ is even then } 1 \text{ else } 0) : \mathbb{N} \to \{0, 1\}$ $(\lambda n. \text{ if } n \text{ is even then } 1 \text{ else } 0)(4)$

- $(\lambda n. \text{ if } n \text{ is even then } 1 \text{ else } 0) : \mathbb{N} \to \{0, 1\}$ $(\lambda n. \text{ if } n \text{ is even then } 1 \text{ else } 0)(4)$
- = if 4 is even then 1 else 0

- $(\lambda n. \text{ if } n \text{ is even then } 1 \text{ else } 0) : \mathbb{N} \to \{0, 1\}$ $(\lambda n. \text{ if } n \text{ is even then } 1 \text{ else } 0)(4)$
- = if 4 is even then 1 else 0
- = 1

- $(\lambda n. \text{ if } n \text{ is even then } 1 \text{ else } 0) : \mathbb{N} \to \{0, 1\}$ $(\lambda n. \text{ if } n \text{ is even then } 1 \text{ else } 0)(3)$ = if 3 is even then 1 else 0
- = 0

8

1

- $(\lambda n. \text{ if } n \text{ is even then } 1 \text{ else } 0)(0)$
- = if 0 is even then 1 else 0

Function Extensionality

FunExt For f,g:X o Y, if f(x)=g(x) for all $x\in X$, then f=g.

Function Extensionality

FunExt For $f,g:X \to Y$, if f(x) = g(x) for all $x \in X$, then f = g.

Check Your Understanding Prove:

•
$$f = \lambda x.f(x)$$

•
$$(\lambda x.x + x) = (\lambda x.2x)$$

9

The Universe of Sets

Composition

If $f : X \to Y$ and $g : Y \to Z$ (i.e. cod(f) = dom(g)), we can **compose** g with f:

$$g \circ f = (\lambda x.g(f(x))) : X \to Z.$$

In words: $g \circ f$ is the function which takes an input, "does f" to it, and then "does g" on the result.

Composition

If $f : X \to Y$ and $g : Y \to Z$ (i.e. cod(f) = dom(g)), we can **compose** g with f:

$$g \circ f = (\lambda x.g(f(x))) : X \to Z.$$

In words: $g \circ f$ is the function which takes an input, "does f" to it, and then "does g" on the result.

Check Your Understanding Verify:

• $h \circ (g \circ f) = (h \circ g) \circ f$ for any f, g, h with suitable (co)domains

$$(\lambda x.x) = (\lambda x.\frac{x}{2}) \circ (\lambda x.2x)$$

10

The Universe of Sets

Identities

For each set X, there is a special function called the **identity** on X: $id_X = \lambda x.x : X \to X$

Identities

For each set X, there is a special function called the **identity** on X: $id_X = \lambda x.x : X \to X$

Check Your Understanding Verify:

• For all
$$f: X \to Y$$
, $f \circ id_X = f$

• For all
$$f: X \to Y$$
, $id_Y \circ f = f$

(More difficult) Show that if e : Y → Y is such that g ∘ e = g for all g : Y → Z and e ∘ f = f for all f : X → Y, then it must be the case that e = id_Y.

1 Some Basic Concepts of Set Theory

Central to the theory of sets is the **empty set**, \emptyset , which is the set with *no elements*.

Central to the theory of sets is the **empty set**, \emptyset , which is the set with *no elements*. We'll characterize \emptyset as follows:

Central to the theory of sets is the **empty set**, \emptyset , which is the set with *no elements*. We'll characterize \emptyset as follows:

A set *E* satisfies UMP-Empty iff for every set *A*, there exists a unique function $E \rightarrow A$.

Central to the theory of sets is the **empty set**, \emptyset , which is the set with *no elements*. We'll characterize \emptyset as follows:

A set *E* satisfies UMP-Empty iff for every set *A*, there exists a unique function $E \rightarrow A$.

 \emptyset satisfies UMP-Empty :

• There is a function $f : \emptyset \to A$ for any set A: the definition of "function" is vacuously satisfied.

Central to the theory of sets is the **empty set**, \emptyset , which is the set with *no elements*. We'll characterize \emptyset as follows:

A set *E* satisfies UMP-Empty iff for every set *A*, there exists a unique function $E \rightarrow A$.

 \emptyset satisfies UMP-Empty :

- There is a function f : Ø → A for any set A: the definition of "function" is vacuously satisfied.
- This function is unique: if $f, g : \emptyset \to A$, then it vacuously holds that f(x) = g(x) for all $x \in \emptyset$, so f = g by FunExt.

Suppose *E* satisfies UMP-Empty.

Suppose *E* satisfies UMP-Empty.

If there were any element $x \in E$, then there would be at least two functions $E \to \{0, 1\}$: one sending $x \mapsto 0$ and the other sending $x \mapsto 1$.

Suppose *E* satisfies UMP-Empty.

If there were any element $x \in E$, then there would be at least two functions $E \to \{0, 1\}$: one sending $x \mapsto 0$ and the other sending $x \mapsto 1$. This contradicts the "uniqueness" requirement of UMP-Empty.

Suppose *E* satisfies UMP-Empty.

If there were any element $x \in E$, then there would be at least two functions $E \to \{0, 1\}$: one sending $x \mapsto 0$ and the other sending $x \mapsto 1$. This contradicts the "uniqueness" requirement of UMP-Empty. So there are no $x \in E$.

Suppose *E* satisfies UMP-Empty.

If there were any element $x \in E$, then there would be at least two functions $E \to \{0, 1\}$: one sending $x \mapsto 0$ and the other sending $x \mapsto 1$. This contradicts the "uniqueness" requirement of UMP-Empty. So there are no $x \in E$. So E must be \emptyset .

Suppose *E* satisfies UMP-Empty.

If there were any element $x \in E$, then there would be at least two functions $E \to \{0, 1\}$: one sending $x \mapsto 0$ and the other sending $x \mapsto 1$. This contradicts the "uniqueness" requirement of UMP-Empty. So there are no $x \in E$. So E must be \emptyset .

So, in conclusion,

E satisfies UMP-Empty $\iff E = \emptyset$.

A set T satisfies UMP-Singleton iff for every set A, there exists a unique function $!_A : A \to T$. Such a set T is called a singleton.

Singletons

A set T satisfies UMP-Singleton iff for every set A, there exists a unique function $!_A : A \to T$. Such a set T is called a singleton.

Prop. 1 If $t, t' \in T$ for some singleton T, then t = t'.

Singletons

A set T satisfies UMP-Singleton iff for every set A, there exists a unique function $!_A : A \to T$. Such a set T is called a singleton.

Prop. 1 If $t, t' \in T$ for some singleton T, then t = t'. Prop. 2 If T is a singleton, then there's some $t \in T$.

Singletons

A set T satisfies UMP-Singleton iff for every set A, there exists a unique function $!_A : A \to T$. Such a set T is called a singleton.

Prop. 1 If $t, t' \in T$ for some singleton T, then t = t'. Prop. 2 If T is a singleton, then there's some $t \in T$.

I.e. every singleton T has exactly one element (hence the name).

Singletons and Elements

Elements

Let **1** be the singleton $\{0\}$, and X any set. There is a correspondence between elements of X and functions $\mathbf{1} \rightarrow X$:

 $\overline{x_0 \in X} \quad ext{ (}\lambda 0.x_0): \mathbf{1} ext{)} X$

Elements

Let **1** be the singleton $\{0\}$, and X any set. There is a correspondence between elements of X and functions $\mathbf{1} \rightarrow X$:

 $x_0 \in X$ \longleftrightarrow $(\lambda 0. x_0): \mathbf{1}
ightarrow X$

x = x' (as elements of X) \iff x = x' (as functions $\mathbf{1} \to X$)

Elements

Let **1** be the singleton $\{0\}$, and X any set. There is a correspondence between elements of X and functions $\mathbf{1} \rightarrow X$:

 $|x_0 \in X$ \longleftrightarrow $(\lambda 0.x_0): \mathbf{1} o X$

$$x = x'$$
 (as elements of X) $\iff x = x'$ (as functions $\mathbf{1} \to X$)

If T satisfies UMP-Singleton, then there exists a unique function $!_1 : \mathbf{1} \to T$, i.e. there is a unique element of T.

Function Extensionality, Revisited

$f: X \to Y$, $x \in X$ (i.e. $x: \mathbf{1} \to X$).

$f(x) \in Y$ $(f \circ x) : \mathbf{1} o Y$

Function Extensionality, Revisited

$$f: X \to Y$$
, $x \in X$ (i.e. $x: \mathbf{1} \to X$).

 $f(x) \in Y$ \longleftrightarrow $(f \circ x) : \mathbf{1} \to Y$

FunExt If $f, f' : X \to Y$ are distinct functions (i.e. $f \neq f'$), then there is some $x : \mathbf{1} \to X$ such that

 $f \circ x \neq f' \circ x.$

A function $f : X \to Y$ of the form $\lambda x. y_0$ for some fixed $y_0 \in Y$ is called a **constant** function.

A function $f : X \to Y$ of the form $\lambda x.y_0$ for some fixed $y_0 \in Y$ is called a **constant** function. Equivalently: $f : X \to Y$ is constant iff f(x) = f(x') for all $x, x' \in X$.

A function $f : X \to Y$ of the form $\lambda x.y_0$ for some fixed $y_0 \in Y$ is called a **constant** function. Equivalently: $f : X \to Y$ is constant iff f(x) = f(x') for all $x, x' \in X$.

Prop. 3 A function $f : X \to Y$ is constant if and only if $f = h \circ g$ for some $g : X \to \mathbf{1}$ and $h : \mathbf{1} \to Y$.

Bijections

A function $f : X \to Y$ is called a **bijection** if it is (left- and right-)*invertible*: there exists some $f' : Y \to X$ such that

$$f \circ f' = \operatorname{id}_Y$$
 and $f' \circ f = \operatorname{id}_X$.

f' is called the *inverse* of f.

Bijections

A function $f : X \to Y$ is called a **bijection** if it is (left- and right-)*invertible*: there exists some $f' : Y \to X$ such that

$$f \circ f' = \operatorname{id}_Y$$
 and $f' \circ f = \operatorname{id}_X$.

f' is called the *inverse* of f.

Check Your Understanding Verify:

- Compositions of bijections are bijections: if f : X → Y and g : Y → Z are bijections, so too is g ∘ f
- Identity functions are bijections

Injectivity

Injections

 $f: X \to Y$ satisfies UMP-Inj iff for all $d, e: W \to X$, $f \circ d = f \circ e$ implies d = e. Such an f is called a **injection** (adjective: *injective*).

Injections

 $f: X \to Y$ satisfies UMP-Inj iff for all $d, e: W \to X$, $f \circ d = f \circ e$ implies d = e. Such an f is called a **injection** (adjective: *injective*).

Consider $W = \mathbf{1}$. Then UMP-Inj says f(x) = f(x') implies x = x' for all elements x, x' of X.

Injections

 $f: X \to Y$ satisfies UMP-Inj iff for all $d, e: W \to X$, $f \circ d = f \circ e$ implies d = e. Such an f is called a **injection** (adjective: *injective*).

Consider $W = \mathbf{1}$. Then UMP-Inj says f(x) = f(x') implies x = x' for all elements x, x' of X.

Check Your Understanding Prove that if f satisfies UMP-Inj for just $W = \mathbf{1}$, then f satisfies UMP-Inj for all W.

Injectivity Implies Left-Invertibility

Prop. 4 $f: X \to Y$ is injective if and only if there exists $f': Y \to X$ such that $f' \circ f = id_X$ (f' is a *left inverse* for f).

Injectivity Implies Left-Invertibility

Prop. 4 $f : X \to Y$ is injective if and only if there exists $f' : Y \to X$ such that $f' \circ f = id_X$ (f' is a *left inverse* for f).

Equivalent definitions of "injective":

- *f* satisfies UMP-Inj
- f(x) = f(x') implies x = x' for all $x, x' \in X$
- f has a left inverse $f': Y \to X$

Left Invertibility Doesn't Imply Bijectivity

• For all $y \in Y$, there exists $x \in X$ such that

f(x) = y

• For all $y \in Y$, there exists $x \in X$ such that

f(x) = y

• Every element $y: \mathbf{1} \to Y$ factors as $f \circ x$ for some element $x: \mathbf{1} \to X$

• For all $y \in Y$, there exists $x \in X$ such that

f(x) = y

• Every element $y: \mathbf{1} \to Y$ factors as $f \circ x$ for some element $x: \mathbf{1} \to X$

• f has a right inverse: a function $f': Y \to X$ such that $f \circ f' = id_Y$

• For all $y \in Y$, there exists $x \in X$ such that

f(x) = y

• Every element $y: \mathbf{1} \to Y$ factors as $f \circ x$ for some element $x: \mathbf{1} \to X$

f has a right inverse: a function f': Y → X such that f ∘ f' = id_Y
f : X → Y satisfies UMP-Surj: for all g, h : Y → Z, g ∘ f = h ∘ f implies g = h

• For all $y \in Y$, there exists $x \in X$ such that

f(x) = y

• Every element $y: \mathbf{1} \to Y$ factors as $f \circ x$ for some element $x: \mathbf{1} \to X$

f has a right inverse: a function f': Y → X such that f ∘ f' = id_Y
f : X → Y satisfies UMP-Surj: for all g, h : Y → Z, g ∘ f = h ∘ f implies g = h

Prop. 5 A function $f : X \to Y$ is a bijection iff it is both an injection and a surjection

• For all $y \in Y$, there exists $x \in X$ such that

f(x) = y

• Every element $y: \mathbf{1} \to Y$ factors as $f \circ x$ for some element $x: \mathbf{1} \to X$

f has a right inverse: a function f': Y → X such that f ∘ f' = id_Y
f : X → Y satisfies UMP-Surj: for all g, h : Y → Z, g ∘ f = h ∘ f implies g = h

Prop. 5 A function $f : X \to Y$ is a bijection iff it is both an injection and a surjection

Thm. (Cantor-Bernstein) If there exist injections $X \to Y$ and $Y \to X$, then there exists a bijection $X \rightleftharpoons Y$

24

(Easier)

25

- Prove that $T = \emptyset$ does not satisfy UMP-Singleton
- Use UMP-Surj to prove that the composition of two surjections is surjective
- Use UMP-Inj to prove that the composition of two injections is injective
- Prove that the unique function $\emptyset o X$ is always injective
- Find an X such that the unique function $X
 ightarrow {f 1}$ is *not* surjective

(More difficult)

- Write out the full argument for the claim: if T satisfies UMP-singleton, then there is exactly one element t ∈ T.
 Prove Prop. 4: that f is injective in the sense of
 - $f(x) = f(x') \implies x = x'$ for all $x, x' \in X$

if and only if f has a left inverse.

• Prove that the four definitions of 'surjective' are all equivalent

• Prove Prop. 5

2 Constructions of Sets

Products

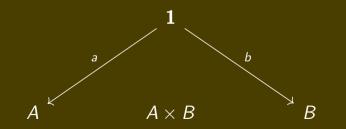
For any sets A, B, we can form their **Cartesian product** $A \times B$, whose elements are pairs:

$$\mathsf{A} imes \mathsf{B} = \{(\mathsf{a}, \mathsf{b}) \mid \mathsf{a} \in \mathsf{A}, \mathsf{b} \in \mathsf{B}\}$$
 .

Products

For any sets A, B, we can form their **Cartesian product** $A \times B$, whose elements are pairs:

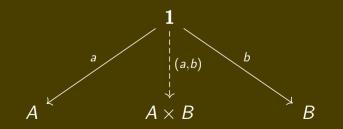
$$A imes B=\{(a,b) \mid a\in A, b\in B\}$$
 .



Products

For any sets A, B, we can form their **Cartesian product** $A \times B$, whose elements are pairs:

$$A imes B=\{(a,b) \mid a\in A, b\in B\}$$
 .



$$\mathsf{pr}_1 = \lambda(a, b).a$$

$$\mathsf{pr}_1 = \lambda(a, b).a$$

- $\mathsf{pr}_1 : A \times B \to A$

$$\mathsf{pr}_1 = \lambda(a, b).a$$

- $\mathsf{pr}_1 : A imes B o A$
 $\mathsf{pr}_2 = \lambda(a, b).b$

$$pr_1 = \lambda(a, b).a$$

$$- pr_1 : A \times B \rightarrow A$$

$$pr_2 = \lambda(a, b).b$$

$$- pr_2 : A \times B \rightarrow B$$

$$pr_1 = \lambda(a, b).a$$

$$- pr_1 : A \times B \rightarrow A$$

$$pr_2 = \lambda(a, b).b$$

$$- pr_2 : A \times B \rightarrow B$$

Given $f: Z \rightarrow A, g: Z \rightarrow B$

$$\mathsf{pr}_1 = \lambda(a, b).a$$

- $\mathsf{pr}_1 : A \times B \to A$
 $\mathsf{pr}_2 = \lambda(a, b).b$
- $\mathsf{pr}_2 : A \times B \to B$

Given
$$f: Z \rightarrow A, g: Z \rightarrow B$$

 $\langle f, g \rangle = \lambda z.(f(z), g(z))$

$$pr_1 = \lambda(a, b).a$$

$$- pr_1 : A \times B \rightarrow A$$

$$pr_2 = \lambda(a, b).b$$

$$- pr_2 : A \times B \rightarrow B$$

$$\begin{array}{ll} \mathsf{Given} & f: Z \to A, \ g: Z \to B \\ \langle f, g \rangle = \lambda z.(f(z), g(z)) \\ - & \langle f, g \rangle : Z \to A \times B \end{array}$$

$$\mathsf{pr}_1 = \lambda(a, b).a$$

- $\mathsf{pr}_1 : A \times B \to A$
 $\mathsf{pr}_2 = \lambda(a, b).b$
- $\mathsf{pr}_2 : A \times B \to B$

Given
$$f: Z \rightarrow A, g: Z \rightarrow B$$

 $\langle f, g \rangle = \lambda z.(f(z), g(z))$
- $\langle f, g \rangle : Z \rightarrow A \times B$

Check Your Understanding

Verify:

$$\mathsf{pr}_1 = \lambda(a, b).a$$

- $\mathsf{pr}_1 : A \times B \to A$
 $\mathsf{pr}_2 = \lambda(a, b).b$
- $\mathsf{pr}_2 : A \times B \to B$

Given
$$f: Z \rightarrow A, g: Z \rightarrow B$$

 $\langle f, g \rangle = \lambda z.(f(z), g(z))$
- $\langle f, g \rangle : Z \rightarrow A \times B$

Check Your Understanding Verify: • For all $f: Z \rightarrow A$ and all $g: Z \rightarrow B$, $\operatorname{pr}_1 \circ \langle f, g \rangle = f$ $\operatorname{pr}_2 \circ \langle f, g \rangle = g$

Categories

$$\mathsf{pr}_1 = \lambda(a, b).a$$

- $\mathsf{pr}_1 : A \times B \to A$
 $\mathsf{pr}_2 = \lambda(a, b).b$
- $\mathsf{pr}_2 : A \times B \to B$

Given
$$f: Z \rightarrow A, g: Z \rightarrow B$$

 $\langle f, g \rangle = \lambda z.(f(z), g(z))$
- $\langle f, g \rangle : Z \rightarrow A \times B$

Check Your Understanding Verify: • For all $f: Z \rightarrow A$ and all $g: Z \to B$, $\operatorname{pr}_1 \circ \langle f, g \rangle = f$ $\operatorname{pr}_2 \circ \langle f, g \rangle = g$ • For all $h: Z \to A \times B$, $\langle \operatorname{pr}_1 \circ h, \operatorname{pr}_2 \circ h \rangle = h$

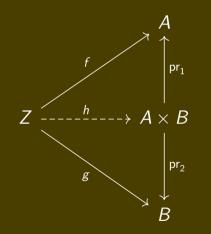
$$\mathsf{pr}_1 = \lambda(a, b).a$$

- $\mathsf{pr}_1 : A \times B \to A$
 $\mathsf{pr}_2 = \lambda(a, b).b$
- $\mathsf{pr}_2 : A \times B \to B$

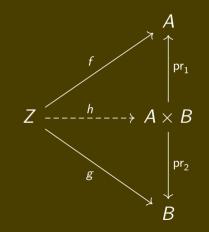
$$\begin{array}{ll} \text{Given} & f: Z \to A, \ g: Z \to B \\ \langle f, g \rangle = \lambda z.(f(z), g(z)) \\ - & \langle f, g \rangle : Z \to A \times B \end{array}$$

Check Your Understanding Verify: • For all $f: Z \to A$ and all $g: Z \to B$, $\operatorname{pr}_1 \circ \langle f, g \rangle = f$ $\operatorname{pr}_2 \circ \langle f, g \rangle = g$ • For all $h: Z \to A \times B$, $\langle \operatorname{pr}_1 \circ h, \operatorname{pr}_2 \circ h \rangle = h$ • pr_1 and pr_2 are surjective (unless A or B is empty)

Constructions of Sets



29



For each $f : Z \rightarrow A$ and $g : Z \rightarrow B$, there exists a unique $h : Z \rightarrow A \times B$ such that $pr_1 \circ h = f$ and $pr_2 \circ h = g$.

Exponentials

For any sets *B*, *C*, we can form their **exponential** C^B , whose elements are functions $B \rightarrow C$:

$$\mathcal{C}^{\mathcal{B}} = \{ w \mid w : \mathcal{B}
ightarrow \mathcal{C} \}$$
 .

Exponentials

For any sets *B*, *C*, we can form their **exponential** C^B , whose elements are functions $B \rightarrow C$:

$$\mathcal{C}^{\mathcal{B}} = \{ w \mid w : \mathcal{B}
ightarrow \mathcal{C} \}$$
 .

$$w: B \to C$$
 $\iff w: \mathbf{1} \to C^B$

Constructions of Sets

$$\mathsf{ev} = \lambda(w, b).w(b)$$

$$ev = \lambda(w, b).w(b)$$

- $ev : C^B \times B \to C$

$$\mathsf{ev} = \lambda(w, b).w(b)$$

- $\mathsf{ev}: C^B imes B o C$

Given $u: A \times B \rightarrow C$

$$\mathsf{ev} = \lambda(w, b).w(b)$$

- $\mathsf{ev}: C^B imes B o C$

Given
$$u : A \times B \rightarrow C$$

 $\widetilde{u} = \lambda a . \lambda b . u(a, b)$

$$\mathsf{ev} = \lambda(w, b).w(b)$$

- $\mathsf{ev}: C^B imes B o C$

Given
$$u : A \times B \rightarrow C$$

 $\widetilde{u} = \lambda a. \lambda b. u(a, b)$
- $\widetilde{u} : A \rightarrow C^B$

$$\mathsf{ev} = \lambda(w, b).w(b)$$

- $\mathsf{ev}: C^B \times B \to C$

$$\begin{array}{ll} \text{Given} & u: A \times B \to C \\ \widetilde{u} = \lambda a. \lambda b. u(a, b) \\ - & \widetilde{u}: A \to C^B \\ \text{Given} & v: A \to C^B \end{array}$$

$$\mathsf{ev} = \lambda(w, b).w(b)$$

- $\mathsf{ev}: C^B imes B o C$

Given
$$u : A \times B \rightarrow C$$

 $\widetilde{u} = \lambda a.\lambda b.u(a, b)$
- $\widetilde{u} : A \rightarrow C^B$
Given $v : A \rightarrow C^B$
 $\overline{v} = \lambda(a, b).(v a) b$

$$\mathsf{ev} = \lambda(w, b).w(b)$$

- $\mathsf{ev} : C^B \times B \to C$

Given
$$u : A \times B \rightarrow C$$

 $\widetilde{u} = \lambda a. \lambda b. u(a, b)$
- $\widetilde{u} : A \rightarrow C^B$
Given $v : A \rightarrow C^B$
 $\overline{v} = \lambda(a, b).(v a) b$
- $\overline{v} : A \times B \rightarrow C$

Check Your Understanding

Verify:

$$\mathsf{ev} = \lambda(w, b).w(b)$$

- $\mathsf{ev}: C^B \times B \to C$

Given
$$u : A \times B \rightarrow C$$

 $\widetilde{u} = \lambda a.\lambda b.u(a, b)$
 $- \qquad \widetilde{u} : A \rightarrow C^B$
Given $v : A \rightarrow C^B$
 $\overline{v} = \lambda(a, b).(v a) b$
 $- \qquad \overline{v} : A \times B \rightarrow C$

Check Your Understanding Verify: • For all $u: A \times B \rightarrow C$ and $v: A \to C^B,$ $\overline{\widetilde{u}} = u$ $\widetilde{\overline{v}} = v$

$$\mathsf{ev} = \lambda(w, b).w(b)$$

- $\mathsf{ev}: C^B \times B \to C$

Given
$$u: A \times B \rightarrow C$$

 $\widetilde{u} = \lambda a.\lambda b.u(a, b)$
 $- \qquad \widetilde{u}: A \rightarrow C^B$
Given $v: A \rightarrow C^B$
 $\overline{v} = \lambda(a, b).(v a) b$
 $- \qquad \overline{v}: A \times B \rightarrow C$

Check Your Understanding
Verify:
• For all
$$u : A \times B \rightarrow C$$
 and
 $v : A \rightarrow C^B$,
 $\overline{\widetilde{u}} = u$ $\overline{\widetilde{v}} = v$
• For all $u : A \times B \rightarrow C$,
 $ev \circ (\lambda(a, b).(\widetilde{u}(a), b)) = u$

Given sets A, B, we can form their **disjoint union** A + B, whose elements are either elements of A or elements of B:

 $A + B = {\operatorname{inl}(a) \mid a \in A} \cup {\operatorname{inr}(b) \mid b \in B}$

Given sets A, B, we can form their **disjoint union** A + B, whose elements are either elements of A or elements of B:

 $A + B = {\operatorname{inl}(a) \mid a \in A} \cup {\operatorname{inr}(b) \mid b \in B}$

The inl and inr "tag" the elements, so every element of A + B is either an element of A or B, but not both.

Given sets A, B, we can form their **disjoint union** A + B, whose elements are either elements of A or elements of B:

 $A + B = {\operatorname{inl}(a) \mid a \in A} \cup {\operatorname{inr}(b) \mid b \in B}$

The inl and inr "tag" the elements, so every element of A + B is either an element of A or B, but not both.

For each $f : A \to Z$ and $g : B \to Z$, we define a unique $[f,g] : A + B \to Z$ by:

 $egin{aligned} [f,g] &= (\lambda \ ext{inl}(a).f(a) \ ext{inr}(b).g(b)) \end{aligned}$

• We'll write **0** for \emptyset , because \emptyset has zero elements

- We'll write **0** for \emptyset , because \emptyset has zero elements
- As covered, $\mathbf{1} = \{0\}$ has one element

- We'll write **0** for \emptyset , because \emptyset has zero elements
- As covered, $\mathbf{1} = \{\mathbf{0}\}$ has one element

 $\mathbf{1} + \mathbf{1} = \{ \text{inl } 0, \text{inr } 0 \}$

- We'll write **0** for \emptyset , because \emptyset has zero elements
- As covered, $\mathbf{1} = \{\mathbf{0}\}$ has one element

2 = **1**+**1** = {inl 0, inr 0}

- We'll write **0** for \emptyset , because \emptyset has zero elements
- As covered, $\mathbf{1} = \{\mathbf{0}\}$ has one element

2 = **1**+**1** = $\{0,1\}$

- We'll write **0** for \emptyset , because \emptyset has zero elements
- As covered, $\mathbf{1} = \{0\}$ has one element

2 = 1+1 = $\{0, 1\}$ **2** + **1** = $\{inl \ 0, inl \ 1, inr \ 0\}$

- We'll write **0** for \emptyset , because \emptyset has zero elements
- As covered, $\mathbf{1} = \{\mathbf{0}\}$ has one element

 $2 = 1 + 1 = \{0, 1\}$ $3 = 2 + 1 = \{inl \ 0, inl \ 1, inr \ 0\}$

- We'll write **0** for \emptyset , because \emptyset has zero elements
- As covered, $\mathbf{1} = \{0\}$ has one element

• . . .

- We'll write **0** for \emptyset , because \emptyset has zero elements
- As covered, $\mathbf{1} = \{\mathbf{0}\}$ has one element

 $2 = 1 + 1 = \{0, 1\}$ $3 = 2 + 1 = \{0, 1, 2\}$ Finite Sets

- We'll write ${f 0}$ for \emptyset , because \emptyset has zero elements
- As covered, $\mathbf{1} = \{0\}$ has one element

$$2 = 1 + 1 = \{0, 1\}$$

 $3 = 2 + 1 = \{0, 1, 2\}$

• . . .

For each finite set X, there is a unique natural number n (the *cardinality* of X) such that X is in bijection with **n**

Check Your Understanding

• Show a bijection

$$A imes A \rightleftharpoons A^2$$

for any set A.

- For any natural number *n*, show a bijection between **n** and $\mathbf{n} + \mathbf{0}$
- For any natural number *n*, show a bijection between **n** and $\mathbf{n} imes \mathbf{1}$

There is a set \mathbb{N} of natural numbers.

There is a set \mathbb{N} of natural numbers. Every natural number is either 0, or

is of the form m+1 for some $m \in \mathbb{N}$.

There is a set ${\mathbb N}$ of natural numbers. Every natural number is either 0, or

is of the form m+1 for some $m \in \mathbb{N}$.

$$\mathbf{1} \xrightarrow{\mathbf{0}} \mathbb{N} \supset \lambda m.m+1$$

There is a set \mathbb{N} of natural numbers. Every natural number is either 0, or

is of the form $m + \overline{1}$ for some $m \in \mathbb{N}$.

$$\mathbf{1} \xrightarrow{\mathbf{0}} \mathbb{N} \supset \lambda m.m+1$$

There is a set \mathbb{N} of natural numbers. Every natural number is either 0, or

is of the form m+1 for some $m \in \mathbb{N}$.

$$\mathbf{1} \xrightarrow{\mathbf{0}} \mathbb{N} \supset \lambda m.m+1$$

$\mathsf{recur}: (\mathbf{1} \to X) \to (X \to X) \to (\mathbb{N} \to X)$

There is a set \mathbb{N} of natural numbers. Every natural number is either 0, or

is of the form m+1 for some $m \in \mathbb{N}$.

$$\mathbf{1} \xrightarrow{\mathbf{0}} \mathbb{N} \supset \lambda m.m+1$$


```
\operatorname{recur}: X \to (X \to X) \to (\mathbb{N} \to X)
```

There is a set \mathbb{N} of natural numbers. Every natural number is either 0, or

is of the form $m + \overline{1}$ for some $m \in \mathbb{N}$.

$$\mathbf{1} \xrightarrow{\mathbf{0}} \mathbb{N} \supset \lambda m.m+1$$

$$ext{recur}: X o (X o X) o (\mathbb{N} o X)$$
 $ext{recur} x_0 ext{ } g ext{ } 0 = x_0$

There is a set $\mathbb N$ of natural numbers. Every natural number is either 0, or

is of the form m+1 for some $m \in \mathbb{N}$.

$$\mathbf{1} \xrightarrow{\mathbf{0}} \mathbb{N} \supset \lambda m.m+1$$

36

 $\begin{array}{rcl} \operatorname{recur}: & X & \to (X \to X) \to (\mathbb{N} \to X) \\ \operatorname{recur} x_0 \ g \ 0 = x_0 \\ \operatorname{recur} x_0 \ g \ (m+1) = g(\operatorname{recur} x_0 \ g \ m) \end{array}$

Theory of the Category of Sets

Constructions of Sets

Indexed Union

Suppose I is a set, and for each $i \in I$, we have a set A_i .

Indexed Union

Suppose I is a set, and for each $i \in I$, we have a set A_i . Then define:

$$\sum_{i\in I}A_i = \{(i,a) \mid i\in I, a\in A_i\}$$

Indexed Union

Suppose *I* is a set, and for each $i \in I$, we have a set A_i . Then define:

$$\sum_{i\in I}A_i = \{(i,a) \mid i\in I, a\in A_i\}$$

$$X+Y=\sum_{i\in \mathbf{2}}A_i$$

 $X imes Y=\sum_{x\in X}Y$

where $A_0 = X$ and $A_1 = Y$

- Formulate a Universal Mapping Property for the (binary) disjoint union operation
- For any set X, construct a bijection

$$X \rightleftharpoons \sum_{x \in X} \mathbf{1}.$$

- A sequence in a set X is a countably-infinite, ordered collection $\{x_i\}_{i\in\mathbb{N}}$. Describe the set of all such sequences in terms of functions.
- Prove for any sets A, B, C that there is a bijection

$$(A \times C) + (B \times C) \rightarrow (A + B) \times C$$

38

3 Theory of Subsets

A set A is a **subset** of B – written $A \subseteq B$ – if every element of A is a also an element of B:

A set A is a **subset** of B – written $A \subseteq B$ – if every element of A is a also an element of B:

$$a \in A \implies a \in B$$

E

A set A is a **subset** of B – written $A \subseteq B$ – if every element of A is a also an element of B:

$$a\in A \implies a\in B.$$
xample: The sets evens $=\{2n \mid n\in \mathbb{N}\}$ and dds $=\{2n+1 \mid n\in \mathbb{N}\}$ are both subsets of $\mathbb{N}.$

A set A is a **subset** of B – written $A \subseteq B$ – if every element of A is a also an element of B:

$$a \in A \implies a \in B.$$

ample: The sets evens $= \{2n \mid n \in \mathbb{N}\}$ and
ds $= \{2n+1 \mid n \in \mathbb{N}\}$ are both subsets of $\mathbb{N}.$

Check Your Understanding Verify:

- For all A, $\emptyset \subseteq A$
- For all $A, A \subseteq A$
 - If $A \subseteq B$ and $B \subseteq A$, then A = B.

Ex od

Inclusions

Inclusions

If $A \subseteq B$, then there is a (unique) function $i_A : A \to B$ which takes each $a \in A$ to itself:

$$i_A(a) = a \in B.$$

Inclusions

If $A \subseteq B$, then there is a (unique) function $i_A : A \to B$ which takes each $a \in A$ to itself:

$$i_A(a) = a \in B.$$

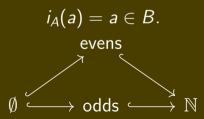
evens
 $\emptyset \longrightarrow \text{odds} \longrightarrow \mathbb{N}$

Inclusions

If $A \subseteq B$, then there is a (unique) function $i_A : A \to B$ which takes each $a \in A$ to itself:

Characteristic Functions

Each subset $A \subseteq B$ is associated with a unique function



Inclusions

If $A \subseteq B$, then there is a (unique) function $i_A : A \rightarrow B$ which takes each $a \in A$ to itself:

$$i_A(a) = a \in B.$$

evens
 $\emptyset \longrightarrow \text{odds} \longrightarrow \mathbb{N}$

Characteristic Functions

Each subset $A \subseteq B$ is associated with a unique function

 $\chi_A: B
ightarrow \mathbf{2}$

given by

 $\chi_{\mathcal{A}} = \lambda b.$ if $b \in \mathcal{A}$ then 1 else 0

i.e. it returns 1 on all elements of A, and 0 on all non-elements of A.

Theory of Subsets

For any given subset $A \subseteq B$, these two functions are related. Notice that, for any $a \in A$, $\chi_A(i_A(a)) = 1$,

For any given subset $A \subseteq B$, these two functions are related. Notice that, for any $a \in A$, $\chi_A(i_A(a)) = 1$, i.e. $\chi_A \circ i_A$ is the constant function $(\lambda a.1) : A \to \mathbf{2}$.

Let true : $\mathbf{1} \to \mathbf{2}$ be the element $1 \in \mathbf{2}$. Recall that $!_X$ is the unique function $X \to \mathbf{1}$.

For any given subset $A \subseteq B$, these two functions are related. Notice that, for any $a \in A$, $\chi_A(i_A(a)) = 1$, i.e. $\chi_A \circ i_A$ is the constant function $(\lambda a.1) : A \to \mathbf{2}$.

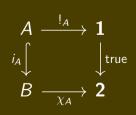
Let true : $\mathbf{1} \to \mathbf{2}$ be the element $1 \in \mathbf{2}$. Recall that $!_X$ is the unique function $X \to \mathbf{1}$. Then, for any $A \subseteq B$,

true $\circ !_A = \chi_A \circ i_A$

For any given subset $A \subseteq B$, these two functions are related. Notice that, for any $a \in A$, $\chi_A(i_A(a)) = 1$, i.e. $\chi_A \circ i_A$ is the constant function $(\lambda a.1) : A \to \mathbf{2}$.

true $\circ !_A = \chi_A \circ i_A$

Let true : $\mathbf{1} \to \mathbf{2}$ be the element $1 \in \mathbf{2}$. Recall that $!_X$ is the unique function $X \to \mathbf{1}$. Then, for any $A \subseteq B$,



There's a (more complex) sense in which i_A and χ_A are the *optimal* functions satisfying this equation

Theory of Subsets

Since we have the correspondence identifying subsets with their characteristic functions.

Since we have the correspondence identifying subsets with their characteristic functions.

$$A\subseteq B$$
 (....) $\chi_A:B
ightarrow{2}$

we can define the **power set** of B – denoted $\mathcal{P}(B)$ – to be the set $\mathbf{2}^{B}$ of all functions $B \rightarrow \mathbf{2}$,

Since we have the correspondence identifying subsets with their characteristic functions.

$$A\subseteq B$$
 ($\chi_A:B
ightarrow{2}$

we can define the **power set** of B – denoted $\mathcal{P}(B)$ – to be the set $\mathbf{2}^{B}$ of all functions $B \rightarrow \mathbf{2}$, that is, the set of all subsets of B.

Since we have the correspondence identifying subsets with their characteristic functions.

$${old A}\subseteq B$$
 (matrix $\chi_{{old A}}:B
ightarrow{old 2}$

we can define the **power set** of B – denoted $\mathcal{P}(B)$ – to be the set $\mathbf{2}^{B}$ of all functions $B \to \mathbf{2}$, that is, the set of all subsets of B.

Thm. (Cantor) There are no surjections $X \to \mathcal{P}(X)$ (for any set X).

Comprehension

Given a set B and a function $\phi: B \to \mathbf{2}$, we'll often write $\{b \in B \mid \phi(b)\}$

to mean the subset of *B* whose characteristic function is ϕ , i.e $\{b \in B \mid \phi(b)\}$ is the set of all those $b \in B$ such that $\phi(b) = 1$.

Comprehension

Given a set B and a function $\phi: B \to \mathbf{2}$, we'll often write $\{b \in B \mid \phi(b)\}$

to mean the subset of *B* whose characteristic function is ϕ , i.e $\{b \in B \mid \phi(b)\}$ is the set of all those $b \in B$ such that $\phi(b) = 1$.

Example:

$$\{x \in \mathbb{R} \mid x^2 = 2\} = \{\sqrt{2}, -\sqrt{2}\}$$

Comprehension

Given a set B and a function $\phi: B \to \mathbf{2}$, we'll often write $\{b \in B \mid \phi(b)\}$

to mean the subset of *B* whose characteristic function is ϕ , i.e $\{b \in B \mid \phi(b)\}$ is the set of all those $b \in B$ such that $\phi(b) = 1$.

Example:

$$\{x \in \mathbb{R} \mid x^2 = 2\} = \{\sqrt{2}, -\sqrt{2}\}$$

(here, ϕ is λx .if $x^2 = 2$ then 1 else 0, and $\pm \sqrt{2}$ are the only two values $x \in \mathbb{R}$ that make $\phi(x) = 1$).

Fibers

Given a function $f : X \to Y$ and an element $y \in Y$, we can form the fiber of y,

 $\mathsf{fib}_f(y) = \{x \in X \mid f(x) = y\}$

Fibers

Given a function $f : X \to Y$ and an element $y \in Y$, we can form the fiber of y,

$$\mathsf{fib}_f(y) = \{x \in X \mid f(x) = y\}$$

Check Your Understanding

• For
$$f = (\lambda x.x^2) : \mathbb{R} \to \mathbb{R}$$
, calculate fib_f(y) for $y = 2$, $y = 0$, and $y = -1$

• For all $f: X \to Y$, construct a bijection $X \rightleftharpoons \sum_{y \in Y} \operatorname{fib}_f(y)$

Given a function $f : X \to Y$ and some fixed $y_0 \in Y$, let $W = fib_f(y_0)$.

Given a function $f : X \to Y$ and some fixed $y_0 \in Y$, let $W = \operatorname{fib}_f(y_0)$. Observe that the inclusion function $i_W : W \hookrightarrow X$ satisfies

$$f \circ i_W = (\lambda x. y_0) \circ i_W.$$

Given a function $f : X \to Y$ and some fixed $y_0 \in Y$, let $W = \operatorname{fib}_f(y_0)$. Observe that the inclusion function $i_W : W \hookrightarrow X$ satisfies

Given a function $f : X \to Y$ and some fixed $y_0 \in Y$, let $W = fib_f(y_0)$. Observe that the inclusion function $i_W : W \hookrightarrow X$ satisfies

Moreover, W is the largest subset of X with this property: if there's any other $W' \subseteq X$ such that $f \circ i_{W'} = (\lambda x. y_0) \circ i_{W'}$, then $W' \subseteq W$

Given a function $f : X \to Y$ and some fixed $y_0 \in Y$, let $W = fib_f(y_0)$. Observe that the inclusion function $i_W : W \hookrightarrow X$ satisfies

Moreover, W is the largest subset of X with this property: if there's any other $W' \subseteq X$ such that $f \circ i_{W'} = (\lambda x. y_0) \circ i_{W'}$, then $W' \subseteq W$

Given functions $f, g : X \to Y$, define the **equalizer** of f and g to be the set $E = \{x \in X \mid f(x) = g(x)\}.$

Given functions $f, g : X \to Y$, define the **equalizer** of f and g to be the set $E = \{x \in X \mid f(x) = g(x)\}$. *E* has the following property:

Given functions $f, g : X \to Y$, define the **equalizer** of f and g to be the set $E = \{x \in X \mid f(x) = g(x)\}$. E has the following property:

• The inclusion function $i_E : E \hookrightarrow X$ satisfies $f \circ i_E = g \circ i_E$

Given functions $f, g : X \to Y$, define the **equalizer** of f and g to be the set $E = \{x \in X \mid f(x) = g(x)\}$. *E* has the following property:

• The inclusion function $i_E : E \hookrightarrow X$ satisfies $f \circ i_E = g \circ i_E$

$$E \xrightarrow{i_E} X \xrightarrow{f} Y$$

Given functions $f, g : X \to Y$, define the **equalizer** of f and g to be the set $E = \{x \in X \mid f(x) = g(x)\}$. *E* has the following property:

• The inclusion function $i_E : E \hookrightarrow X$ satisfies $f \circ i_E = g \circ i_E$

$$E \xrightarrow{i_E} X \xrightarrow{f} Y$$

• For any other set Z and any function $h: Z \to X$ such that $f \circ h = g \circ h$, there exists a unique function $\langle h \rangle : Z \to E$ such that $h = i_E \circ \langle h \rangle$.

Given functions $f, g : X \to Y$, define the **equalizer** of f and g to be the set $E = \{x \in X \mid f(x) = g(x)\}$. E has the following property:

• The inclusion function $i_E : E \hookrightarrow X$ satisfies $f \circ i_E = g \circ i_E$

$$E \xrightarrow{i_E} X \xrightarrow{f} Y$$

$$\downarrow^{\uparrow} \qquad h$$

$$Z$$

• For any other set Z and any function $h: Z \to X$ such that $f \circ h = g \circ h$, there exists a unique function $\langle h \rangle : Z \to E$ such that $h = i_E \circ \langle h \rangle$.

Check Your Understanding

Given f, g, h as on the previous slide, verify: • $f \circ i_E = g \circ i_E$

We'll define the function $\langle h \rangle : Z \to E$ demanded by UMP-Eqlzr by

$$\langle h \rangle = \lambda z.h(z)$$

Verify:

47

- For every $z \in Z$, $\langle h \rangle(z) \in E$
- $i_E \circ \langle h \rangle = h$

Generalization: Fiber Products

Suppose we have sets A, B, C and functions $f : A \to C$ and $g : B \to C$. Define the **fiber product** of f and g (denoted $A \times_C B$) to be the set

Generalization: Fiber Products

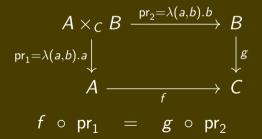
Suppose we have sets A, B, C and functions $f : A \to C$ and $g : B \to C$. Define the **fiber product** of f and g (denoted $A \times_C B$) to be the set

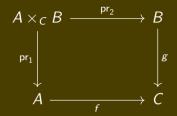
 $\{(a, \overline{b}) \in A \times B \mid f(a) = \overline{g(b)}\}$

Generalization: Fiber Products

Suppose we have sets A, B, C and functions $f : A \to C$ and $g : B \to C$. Define the **fiber product** of f and g (denoted $A \times_C B$) to be the set

 $\{(a,b)\in A\times B \mid f(a)=g(b)\}$

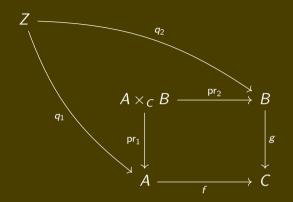




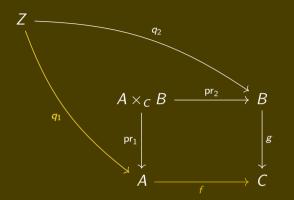
Ζ

 $\begin{array}{c|c} A \times_C B & \xrightarrow{\operatorname{pr}_2} & B \\ & & \downarrow^{\operatorname{pr}_1} & & \downarrow^{\operatorname{g}} \\ A & \xrightarrow{f} & C \end{array}$

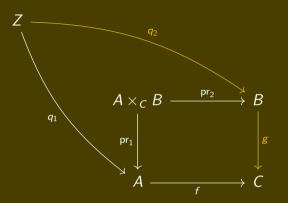
For all sets Z



For all sets Z and all functions $q_1: Z \rightarrow A$, $q_2: Z \rightarrow B$

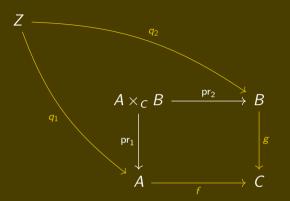


For all sets Z and all functions $q_1: \overline{Z \to A}, q_2: \overline{Z \to B}$ such that $f \circ q_1$



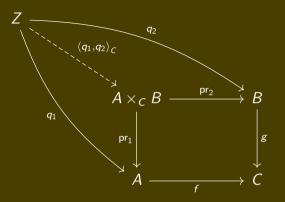
For all sets Z and all functions $q_1: Z \to \overline{A}, q_2: Z \to \overline{B}$ such that $f \circ q_1 = g \circ q_2$

Theory of Subsets



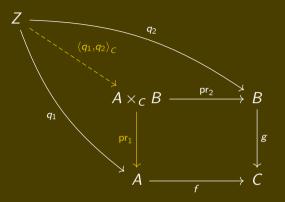
For all sets Z and all functions $q_1: Z \to \overline{A}, q_2: Z \to B$ such that $f \circ q_1 = g \circ q_2$,

Theory of Subsets



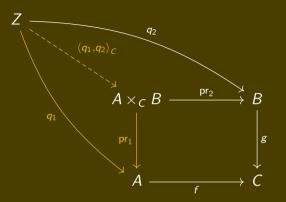
For all sets Z and all functions $q_1 : Z \to A$, $q_2 : Z \to B$ such that $f \circ q_1 = g \circ q_2$, there exists a unique function $\langle q_1, q_2 \rangle_C : Z \to A \times_C B$

Theory of Subsets



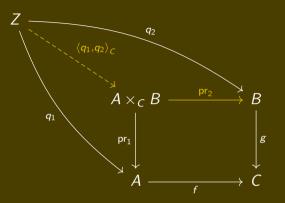
For all sets Z and all functions $q_1 : Z \to A$, $q_2 : Z \to B$ such that $f \circ q_1 = g \circ q_2$, there exists a unique function $\langle q_1, q_2 \rangle_C : Z \to A \times_C B$ such that $\text{pr}_1 \circ \langle q_1, q_2 \rangle_C$

Theory of Subsets



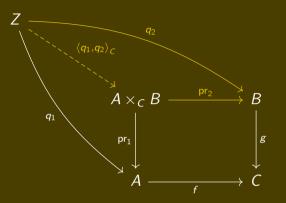
For all sets Z and all functions $q_1 : Z \to A$, $q_2 : Z \to B$ such that $f \circ q_1 = g \circ q_2$, there exists a unique function $\langle q_1, q_2 \rangle_C : Z \to A \times_C B$ such that $\text{pr}_1 \circ \langle q_1, q_2 \rangle_C = q_1$

Theory of Subsets

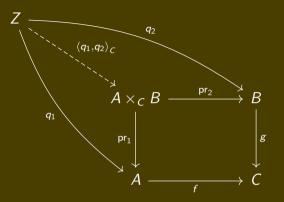


For all sets Z and all functions $q_1 : Z \to A$, $q_2 : Z \to B$ such that $f \circ q_1 = g \circ q_2$, there exists a unique function $\langle q_1, q_2 \rangle_C : Z \to A \times_C B$ such that $\text{pr}_1 \circ \langle q_1, q_2 \rangle_C = q_1$ and $\text{pr}_2 \circ \langle q_1, q_2 \rangle_C$

Theory of Subsets



For all sets Z and all functions $q_1 : Z \to A$, $q_2 : Z \to B$ such that $f \circ q_1 = g \circ q_2$, there exists a unique function $\langle q_1, q_2 \rangle_C : Z \to A \times_C B$ such that $\text{pr}_1 \circ \langle q_1, q_2 \rangle_C = q_1$ and $\text{pr}_2 \circ \langle q_1, q_2 \rangle_C = q_2$

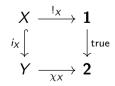


For all sets Z and all functions $q_1 : Z \to A$, $q_2 : Z \to B$ such that $f \circ q_1 = g \circ q_2$, there exists a unique function $\langle q_1, q_2 \rangle_C : Z \to A \times_C B$ such that $\text{pr}_1 \circ \langle q_1, q_2 \rangle_C = q_1$ and $\text{pr}_2 \circ \langle q_1, q_2 \rangle_C = q_2$

Check Your Understanding

- State UMP-FibProd for the case $Z = \mathbf{1}$ and interpret it as a statement describing the elements of $A \times_C B$
- For any sets A, B, find a set C and functions f : A → C, g : B → C such that A ×_C B is the cartesian product A × B

Check Your Understanding



is a pullback square.

Kernels

Consider the fiber product of $f : A \rightarrow \overline{C}$ with itself:

$$K = A \times_C A \xrightarrow{k_2 = \lambda(a, a').a'} A$$
$$k_1 = \lambda(a, a').a \downarrow \qquad \qquad \downarrow f$$
$$A \xrightarrow{f} C$$

Kernels

Consider the fiber product of $f : A \rightarrow C$ with itself:

 $K \subseteq A \times A$ is the set of all pairs (a, a') such that f(a) = f(a').

Kernels

Consider the fiber product of $f : A \rightarrow C$ with itself:

$$K = A \times_C A \xrightarrow{k_2 = \lambda(a,a').a'} A$$
$$k_1 = \lambda(a,a').a \downarrow \qquad \qquad \downarrow f$$
$$A \xrightarrow{f} C$$

 $K \subseteq A \times A$ is the set of all pairs (a, a') such that f(a) = f(a'). k_1, k_2 is called the kernel pair of f.

Equivalence Relations

The kernel $K = \{(a, a') \in A \times A \mid f(a) = f(a')\}$ satisfies three properties:

Equivalence Relations

The kernel $K = \{(a, a') \in A \times A \mid f(a) = f(a')\}$ satisfies three properties:

• Reflexivity For all $a \in A$, $(a, a) \in K$

Equivalence Relations

The kernel $K = \{(a, a') \in A \times A \mid f(a) = f(a')\}$ satisfies three properties:

- Reflexivity For all $a \in A$, $(a, a) \in K$
- Symmetry If $(a, a') \in K$, then $(a', a) \in K$

Equivalence Relations

The kernel $K = \{(a, a') \in A \times A \mid f(a) = f(a')\}$ satisfies three properties:

- Reflexivity For all $a \in A$, $(a, a) \in K$
- Symmetry If $(a, a') \in K$, then $(a', a) \in K$

• Transitivity If $(a, a') \in K$ and $(a', a'') \in K$, then $(a, a'') \in K$.

Equivalence Relations

The kernel $K = \{(a, a') \in A \times A \mid f(a) = f(a')\}$ satisfies three properties:

- Reflexivity For all $a \in A$, $(a, a) \in K$
- Symmetry If $(a, a') \in K$, then $(a', a) \in K$
- Transitivity If $(a, a') \in K$ and $(a', a'') \in K$, then $(a, a'') \in K$.

A subset of $A \times A$ satisfying these three conditions is called an **equivalence relation** on A.

Check Your Understanding

Verify:

- $R = A \times A$ is an equivalence relation on A
- $R = \Delta_A = \{(a, a) \mid a \in A\}$ is an equivalence relation on A
- The set $R \subseteq \mathbb{Z} \times \mathbb{Z}$ given by

$$\{(p,q)\in\mathbb{Z} imes\mathbb{Z}\ \mid\ (p-q) ext{ is a multiple of } 2\}$$

is an equivalence relation.

Given an equivalence relation R on A and an element $a \in A$, define the equivalence class of a to be the set

$$[a]_R=\{a'\in A \mid (a,a')\in R\}\subseteq A$$

Given an equivalence relation R on A and an element $a \in A$, define the equivalence class of a to be the set

 $[a]_R = \{a' \in A \mid (a,a') \in R\} \subseteq A$ Notice that $(a,a') \in R$ iff $[a]_R = [a']_R$.

Given an equivalence relation R on A and an element $a \in A$, define the equivalence class of a to be the set

$$[a]_R=\{a'\in A\ |\ (a,a')\in R\}\subseteq A$$
Notice that $(a,a')\in R$ iff $[a]_R=[a']_R.$ Then put

$$A/R = \{ [a]_R \mid a \in A \} .$$

Given an equivalence relation R on A and an element $a \in A$, define the equivalence class of a to be the set

 $A/R = \{ [a]_R \mid a \in A \}$.

$$[a]_R=\{a'\in A\ |\ (a,a')\in R\}\subseteq A$$
Notice that $(a,a')\in R$ iff $[a]_R=[a']_R.$ Then put

And write π_R for the function $(\lambda a.[a]_R) : A \to A/R$.

Given an equivalence relation R on A and an element $a \in A$, define the equivalence class of a to be the set

$$[a]_R=\{a'\in A\ |\ (a,a')\in R\}\subseteq$$

Notice that $(a,a')\in R$ iff $[a]_R=[a']_R.$
Then put

$$A/R = \{ [a]_R \mid a \in A \} .$$

And write π_R for the function $(\lambda a.[a]_R) : A \to A/R$.

Check Your Understanding

Prove that π_R is a surjection for any A and R.

$$R \xrightarrow{\operatorname{pr}_1} A \xrightarrow{\pi_R} A/R$$

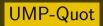
$$R \xrightarrow{\operatorname{pr}_1} A \xrightarrow{\pi_R} A/R$$

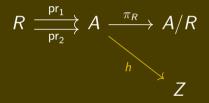
$$R \xrightarrow[\operatorname{pr}_2]{\operatorname{pr}_2} A \xrightarrow[\operatorname{pr}_2]{\pi_R} A/R$$

• $\pi_R \circ \operatorname{pr}_1 = \pi_R \circ \operatorname{pr}_2$

$$R \xrightarrow{\operatorname{pr}_1} A \xrightarrow{\pi_R} A/R$$

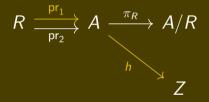
• $\pi_R \circ \operatorname{pr}_1 = \pi_R \circ \operatorname{pr}_2$





- $\pi_R \circ \operatorname{pr}_1 = \pi_R \circ \operatorname{pr}_2$
- If $h: A \rightarrow Z$

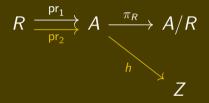




• $\pi_R \circ \operatorname{pr}_1 = \pi_R \circ \operatorname{pr}_2$

• If $h: A \to Z$ is such that $h \circ \text{pr}_1 = h \circ \text{pr}_2$,

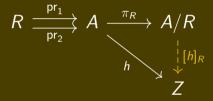




• $\pi_R \circ \operatorname{pr}_1 = \pi_R \circ \operatorname{pr}_2$

• If $h: A \to Z$ is such that $h \circ \text{pr}_1 = h \circ \text{pr}_2$,

Since $R \subseteq A \times A$, we have $pr_1 = (\lambda(a, a').a) : R \to A$ and $pr_2 = (\lambda(a, a').a') : R \to A$.

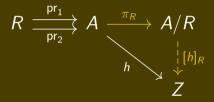


• $\pi_R \circ \operatorname{pr}_1 = \pi_R \circ \operatorname{pr}_2$

• If $h : A \to Z$ is such that $h \circ pr_1 = h \circ pr_2$, then there exists a unique $[h] : A/R \to Z$

Theory of Subsets

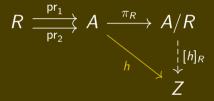
Since $R \subseteq A \times A$, we have $pr_1 = (\lambda(a, a').a) : R \to A$ and $pr_2 = (\lambda(a, a').a') : R \to A$.



- $\pi_R \circ \operatorname{pr}_1 = \pi_R \circ \operatorname{pr}_2$
- If $h : A \to Z$ is such that $h \circ \operatorname{pr}_1 = h \circ \operatorname{pr}_2$, then there exists a unique $[h] : A/R \to Z$ such that $[h] \circ \pi_R = h$.

56

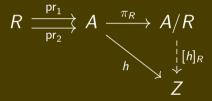
Since $R \subseteq A \times A$, we have $pr_1 = (\lambda(a, a').a) : R \to A$ and $pr_2 = (\lambda(a, a').a') : R \to A$.



- $\pi_R \circ \operatorname{pr}_1 = \pi_R \circ \operatorname{pr}_2$
- If $h : A \to Z$ is such that $h \circ pr_1 = h \circ pr_2$, then there exists a unique $[h] : A/R \to Z$ such that $[h] \circ \pi_R = h$.

56

Since $R \subseteq A \times A$, we have $pr_1 = (\lambda(a, a').a) : R \to A$ and $pr_2 = (\lambda(a, a').a') : R \to A$.



- $\pi_R \circ \operatorname{pr}_1 = \pi_R \circ \operatorname{pr}_2$
- If $h : A \to Z$ is such that $h \circ pr_1 = h \circ pr_2$, then there exists a unique $[h] : A/R \to Z$ such that $[h] \circ \pi_R = h$.

56

By UMP-Quot, every function $g : A/R \to Z$ is of the form [h] for some $h : A \to Z$ such that $h \circ pr_1 = h \circ pr_2$.

By UMP-Quot, every function $g : A/R \to Z$ is of the form [h] for some $h : A \to Z$ such that $h \circ pr_1 = h \circ pr_2$. In particular,

 $g=[g\circ\pi_R].$

By UMP-Quot, every function $g : A/R \to Z$ is of the form [h] for some $h : A \to Z$ such that $h \circ pr_1 = h \circ pr_2$. In particular,

 $g=[g\circ\pi_R].$

By UMP-Quot, every function $g : A/R \to Z$ is of the form [h] for some $h : A \to Z$ such that $h \circ pr_1 = h \circ pr_2$. In particular,

 $g = [g \circ \pi_R].$

Given $h: A \rightarrow Z$

By UMP-Quot, every function $g : \overline{A/R} \to Z$ is of the form [h] for some $h : A \to Z$ such that $h \circ pr_1 = h \circ pr_2$. In particular,

 $g = [g \circ \pi_R].$

Given $h: A \to Z$ $(\lambda[a]_R.h(a)) : A/R \to Z$

By UMP-Quot, every function $g : A/R \to Z$ is of the form [h] for some $h : A \to Z$ such that $h \circ pr_1 = h \circ pr_2$. In particular,

 $g=[g\circ\pi_R].$

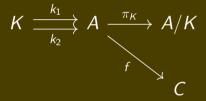
Given
$$h : A \to Z$$

 $(\lambda[a]_R.h(a)) : A/R \to Z$
REQUIRES: if $[a]_R = [a']_R$ (i.e. $(a, a') \in R$), then $h(a) = h(a')$.

Theory of Subsets

Quotienting by the Kernel

Given a function $f : A \to C$ with kernel pair $K \xrightarrow[k_2]{k_2} A$, construct the quotient diagram



Quotienting by the Kernel

Given a function $f : A \to C$ with kernel pair $K \xrightarrow[k_2]{k_2} A$, construct the quotient diagram

$$K \xrightarrow[k_2]{k_1} A \xrightarrow[f]{\pi_K} A/K$$

$$\downarrow [f] = \lambda[a]_K.f(a)$$

$$C$$

Quotienting by the Kernel

Given a function $f : A \to C$ with kernel pair $K \xrightarrow[k_2]{k_2} A$, construct the quotient diagram

$$K \xrightarrow[k_2]{k_2} A \xrightarrow[f]{\pi_{\mathcal{K}}} A/K$$

$$\downarrow [f]=\lambda[a]_{\mathcal{K}}.f(a)$$

$$C$$

Check Your Understanding Verify that the lambda function $\lambda[a]_{\kappa} f(a)$ satisfies the

requirements from the previous slide, and verify $f = (\lambda[a]_K f(a)) \circ \pi_K$.

58

Theory of Subsets

Given $f : A \to C$ as before, define the **image** of f to be the set im $(f) = \{c \in C \mid c = f(a) \text{ for some } a \in A\} = \{c \in C \mid \text{fib}_f(c) \neq \emptyset\}$

Given $f : A \to C$ as before, define the **image** of f to be the set im $(f) = \{c \in C \mid c = f(a) \text{ for some } a \in A\} = \{c \in C \mid \text{fib}_f(c) \neq \emptyset\}$

Prop. 6 For $f: A \to C$ with kernel K, $A/K = \{ \operatorname{fib}_f(c) \mid c \in \operatorname{im}(f) \}$

Given $f : A \to C$ as before, define the **image** of f to be the set im $(f) = \{c \in C \mid c = f(a) \text{ for some } a \in A\} = \{c \in C \mid \text{fib}_f(c) \neq \emptyset\}$

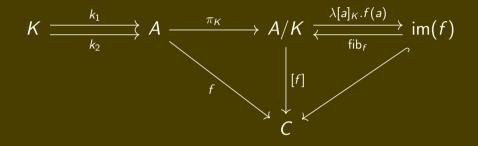
Prop. 6 For $f : A \to C$ with kernel K, $A/K = \{ \operatorname{fib}_f(c) \mid c \in \operatorname{im}(f) \}$ Prop. 7 $\operatorname{fib}_f : \operatorname{im}(f) \to A/K$ is a bijection: $A/K \xrightarrow{\lambda[a]_K \cdot f(a)} \operatorname{im}(f)$

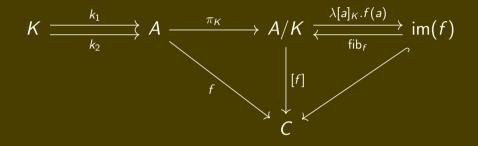
$$A/K \xrightarrow{\lambda[a]_{K}.f(a)}{\underset{\text{fib}_{f}}{\longleftarrow}} \operatorname{im}(f)$$

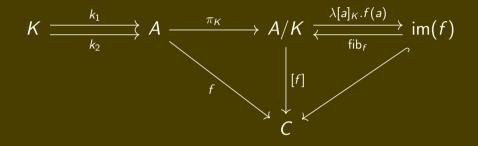
Given $f : A \to C$ as before, define the **image** of f to be the set im $(f) = \{c \in C \mid c = f(a) \text{ for some } a \in A\} = \{c \in C \mid \text{fib}_f(c) \neq \emptyset\}$

Prop. 6 For $f : A \to C$ with kernel K, $A/K = \{ \operatorname{fib}_f(c) \mid c \in \operatorname{im}(f) \}$ Prop. 7 $\operatorname{fib}_f : \operatorname{im}(f) \to A/K$ is a bijection: $A/K \xrightarrow{\lambda[a]_K \cdot f(a)} \operatorname{im}(f)$

$$A/K \xrightarrow{\lambda[a]_{K}.f(a)}{\underset{\text{fib}_{f}}{\longleftarrow}} \operatorname{im}(f)$$







Check Your Understanding

- Prove Prop. 6
- Prove Prop. 7
- Prove that $[f] \circ fib_f$ is equal to the inclusion of im(f) into C
- Prove that [f] is injective

• Sets and functions between them

- Sets and functions between them
- The "algebra of functions": composition and identity functions

- Sets and functions between them
- The "algebra of functions": composition and identity functions
- Special *functions* which satisfy universal mapping properties

- Sets and functions between them
- The "algebra of functions": composition and identity functions
- Special *functions* which satisfy universal mapping properties
- Special sets which satisfy universal mapping properties

Summary

- Sets and functions between them
- The "algebra of functions": composition and identity functions
- Special functions which satisfy universal mapping properties
- Special sets which satisfy universal mapping properties
- A notion of "element", defined in terms of functions

Summary

- Sets and functions between them
- The "algebra of functions": composition and identity functions
- Special functions which satisfy universal mapping properties
- Special sets which satisfy universal mapping properties
- A notion of "element", defined in terms of functions
- Constructions of set diagrams, with universal mapping properties

Summary

- Sets and functions between them
- The "algebra of functions": composition and identity functions
- Special functions which satisfy universal mapping properties
- Special sets which satisfy universal mapping properties
- A notion of "element", defined in terms of functions
- Constructions of set diagrams, with universal mapping properties
- A notion of "subset", defined in terms of functions

Next Time...

• The Outer Limits of Set Theory

Next Time...

• The Outer Limits of Set Theory

• Categories

- The Outer Limits of Set Theory
- Categories
- Concrete Categories

- The Outer Limits of Set Theory
- Categories
- Concrete Categories
- Abstract Categories

Thanks for watching!