
Theory of the Category of Sets
The Heart and Soul of Modern Mathematics



Set Theory and Category Theory

Set Theory

• Primarily originated in 19th century, underwent substantial
development in 20th century

• Dominant foundational framework for mathematics
• Formally axiomatized

I Zermelo-Frankel axioms (± some axioms)

Category Theory

• Emerged in the mid 20th-century

• Provides a different language for studying mathematical structures

• Can also serve as a foundational framework
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The Theory of the Category of Sets

Lawvere’s Elementary Theory of the Category of Sets (1964)
proposes that we study the category of sets, i.e. use the tools & mindset
of category theory to do set theory.

This video: Explain the basic theory of sets – as a category, but without
any explicit category theory language
Next video: Introduce category theory and “officially” define the
category of sets
Future videos: Study other interesting categories, define abstract
category-theoretic “structure”, build up the basics of category theory
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0 The Universe of Sets



Sets
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Sets

{0, 5, 7, 4} is a set
0 ∈ {0, 5, 7, 4}
7 ∈ {0, 5, 7, 4}
3 6∈ {0, 5, 7, 4}

{0, 5, 7, 4} = {4, 5, 0, 7}
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Sets

{0, 5, 7, 4} is a set
0 ∈ {0, 5, 7, 4}
7 ∈ {0, 5, 7, 4}
3 6∈ {0, 5, 7, 4}

{0, 5, 7, 4} = {4, 5, 0, 7}
{0, 5, 7, 4} = {4, 5, 5, 5, 0, 7, 5}
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Sets

Informally, a set is a collection of elements (which could be anything,
including other sets)

A set X is defined by the elements which are in X . We write x ∈ X to
mean that x is in X , and x 6∈ X to mean that x is not in X . If two sets
have the exact same elements (x ∈ X ⇐⇒ x ∈ Y ), they are the same
(X = Y ).
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Functions

A function f is given by:

• A set dom(f ), called the domain of f

• A set cod(f ), called the codomain of f

• An assignment of each element x ∈ dom(f ) to an element
f (x) ∈ cod(f )

We’ll write f : X → Y to indicate that f is a function whose domain is X
and whose codomain is Y . We’ll sometimes write f : x 7→ y to mean that
y = f (x).
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Lambda Notation

To easily refer to & define functions, we’ll make use of λ-notation:

if we
define

f = (λx .e(x)) : X → Y

then, for any z ∈ X , f (z) is obtained by “evaluating” the “expression”
e(z).
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Lambda Practice

(λx .x + x) : R→ R

8 Theory of the Category of Sets The Universe of Sets set Categories



Lambda Practice

(λx .x + x) : R→ R
(λx .x + x)(4)

8 Theory of the Category of Sets The Universe of Sets set Categories



Lambda Practice

(λx .x + x) : R→ R
(λx .x + x)(4)
= 4 + 4

8 Theory of the Category of Sets The Universe of Sets set Categories



Lambda Practice

(λx .x + x) : R→ R
(λx .x + x)(4)
= 4 + 4
= 8

8 Theory of the Category of Sets The Universe of Sets set Categories



Lambda Practice

(λx .x + x) : R→ R
(λx .x + x)(4)
= 4 + 4
= 8
(λx .x + x)(2.1)
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Lambda Practice

(λx .x + x) : R→ R
(λx .x + x)(4)
= 4 + 4
= 8
(λx .x + x)(2.1)
= 2.1 + 2.1
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Lambda Practice

(λx .x + x) : R→ R
(λx .x + x)(4)
= 4 + 4
= 8
(λx .x + x)(2.1)
= 2.1 + 2.1
= 4.2
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Lambda Practice

(λ(x , y).
√

x2 + y 2) : R2 → [0,∞)
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Lambda Practice

(λ(x , y).
√

x2 + y 2) : R2 → [0,∞)
(λ(x , y).

√
x2 + y 2)(3, 4)
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Lambda Practice

(λ(x , y).
√

x2 + y 2) : R2 → [0,∞)
(λ(x , y).

√
x2 + y 2)(3, 4)

=
√

32 + 42
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Lambda Practice

(λ(x , y).
√

x2 + y 2) : R2 → [0,∞)
(λ(x , y).

√
x2 + y 2)(3, 4)

=
√

32 + 42

= 5
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Lambda Practice

(λn. if n is even then 1 else 0) : N→ {0, 1}
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(λn. if n is even then 1 else 0) : N→ {0, 1}
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Lambda Practice
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Lambda Practice

(λn. if n is even then 1 else 0) : N→ {0, 1}
(λn. if n is even then 1 else 0)(3)
= if 3 is even then 1 else 0
= 0
(λn. if n is even then 1 else 0)(0)
= if 0 is even then 1 else 0
= 1
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Function Extensionality

FunExt For f , g : X → Y , if f (x) = g(x) for all x ∈ X , then f = g .

Check Your Understanding Prove:

• f = λx .f (x)

• (λx .x + x) = (λx .2x)
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Composition

If f : X → Y and g : Y → Z (i.e. cod(f ) = dom(g)), we can compose
g with f :

g ◦ f = (λx .g(f (x))) : X → Z .

In words: g ◦ f is the function which takes an input, “does f ” to it, and
then “does g” on the result.

Check Your Understanding Verify:

• h ◦ (g ◦ f ) = (h ◦ g) ◦ f for any f , g , h with suitable (co)domains

•
(λx .x) =

(
λx .

x

2

)
◦ (λx .2x)
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Identities

For each set X , there is a special function called the identity on X :

idX = λx .x : X → X

Check Your Understanding Verify:

• For all f : X → Y , f ◦ idX = f

• For all f : X → Y , idY ◦ f = f

• (More difficult) Show that if e : Y → Y is such that g ◦ e = g for
all g : Y → Z and e ◦ f = f for all f : X → Y , then it must be
the case that e = idY .
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1 Some Basic Concepts of Set Theory



The Empty Set

Central to the theory of sets is the empty set, ∅, which is the set with
no elements.

We’ll characterize ∅ as follows:

A set E satisfies UMP-Empty iff for every set A, there exists a unique
function E → A.

∅ satisfies UMP-Empty :

• There is a function f : ∅ → A for any set A: the definition of
“function” is vacuously satisfied.
• This function is unique: if f , g : ∅ → A, then it vacuously holds that
f (x) = g(x) for all x ∈ ∅, so f = g by FunExt .

u
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Uniqueness of The Empty Set

Suppose E satisfies UMP-Empty .

If there were any element x ∈ E , then there would be at least two
functions E → {0, 1}: one sending x 7→ 0 and the other sending x 7→ 1.
This contradicts the “uniqueness” requirement of UMP-Empty . So
there are no x ∈ E . So E must be ∅.

So, in conclusion,

E satisfies UMP-Empty ⇐⇒ E = ∅.
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Singletons

A set T satisfies UMP-Singleton iff for every set A, there exists a
unique function !A : A→ T . Such a set T is called a singleton.

Prop. 1 If t, t ′ ∈ T for some singleton T , then t = t ′.

Prop. 2 If T is a singleton, then there’s some t ∈ T .

I.e. every singleton T has exactly one element (hence the name).
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Singletons and Elements
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Elements

Let 1 be the singleton {0}, and X any set. There is a correspondence
between elements of X and functions 1→ X :

x0 ∈ X (λ0.x0) : 1→ X

x = x ′ (as elements of X ) ⇐⇒ x = x ′ (as functions 1→ X )

If T satisfies UMP-Singleton , then there exists a unique function
!1 : 1→ T , i.e. there is a unique element of T .
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Function Extensionality, Revisited

f : X → Y , x ∈ X (i.e. x : 1→ X ).

f (x) ∈ Y (f ◦ x) : 1→ Y

FunExt If f , f ′ : X → Y are distinct functions (i.e. f 6= f ′), then there is
some x : 1→ X such that

f ◦ x 6= f ′ ◦ x .
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A function f : X → Y of the form λx .y0 for some fixed y0 ∈ Y is called a
constant function.

Equivalently: f : X → Y is constant iff f (x) = f (x ′)
for all x , x ′ ∈ X .

Prop. 3 A function f : X → Y is constant if and only if f = h ◦ g for
some g : X → 1 and h : 1→ Y .
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Bijections

A function f : X → Y is called a bijection if it is (left- and
right-)invertible: there exists some f ′ : Y → X such that

f ◦ f ′ = idY and f ′ ◦ f = idX .

f ′ is called the inverse of f .

Check Your Understanding Verify:

• Compositions of bijections are bijections: if f : X → Y and
g : Y → Z are bijections, so too is g ◦ f
• Identity functions are bijections
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Injectivity
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Injections

f : X → Y satisfies UMP-Inj iff for all d , e : W → X , f ◦ d = f ◦ e
implies d = e. Such an f is called a injection (adjective: injective).

Consider W = 1. Then UMP-Inj says f (x) = f (x ′) implies x = x ′ for
all elements x , x ′ of X .

Check Your Understanding Prove that if f satisfies UMP-Inj for just

W = 1, then f satisfies UMP-Inj for all W .
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Injectivity Implies Left-Invertibility

Prop. 4 f : X → Y is injective if and only if there exists f ′ : Y → X
such that f ′ ◦ f = idX (f ′ is a left inverse for f ).

Equivalent definitions of “injective”:

• f satisfies UMP-Inj

• f (x) = f (x ′) implies x = x ′ for all x , x ′ ∈ X

• f has a left inverse f ′ : Y → X
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Left Invertibility Doesn’t Imply Bijectivity
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f : X → Y is surjective:

• For all y ∈ Y , there exists x ∈ X such that

f (x) = y

• Every element y : 1→ Y factors as f ◦ x for some element x : 1→ X

• f has a right inverse: a function f ′ : Y → X such that f ◦ f ′ = idY

• f : X → Y satisfies UMP-Surj : for all g , h : Y → Z , g ◦ f = h ◦ f
implies g = h

Prop. 5 A function f : X → Y is a bijection iff it is both an injection
and a surjection
Thm. (Cantor-Bernstein) If there exist injections X → Y and Y → X ,
then there exists a bijection X � Y
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Check Your Understanding

(Easier)

• Prove that T = ∅ does not satisfy UMP-Singleton

• Use UMP-Surj to prove that the composition of two surjections is
surjective

• Use UMP-Inj to prove that the composition of two injections is
injective

• Prove that the unique function ∅ → X is always injective

• Find an X such that the unique function X → 1 is not surjective
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Check Your Understanding

(More difficult)

• Write out the full argument for the claim: if T satisfies
UMP-singleton , then there is exactly one element t ∈ T .

• Prove Prop. 4 : that f is injective in the sense of

f (x) = f (x ′) =⇒ x = x ′ for all x , x ′ ∈ X

if and only if f has a left inverse.

• Prove that the four definitions of ‘surjective’ are all equivalent

• Prove Prop. 5
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2 Constructions of Sets



Products

For any sets A, B , we can form their Cartesian product A× B , whose
elements are pairs:

A× B = {(a, b) | a ∈ A, b ∈ B} .

1

A A× B B

a b
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UMP-Prod
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Check Your Understanding

Verify:

• For all f : Z → A and all
g : Z → B ,

pr1 ◦ 〈f , g〉 = f

pr2 ◦ 〈f , g〉 = g

• For all h : Z → A× B ,
〈pr1 ◦ h, pr2 ◦ h〉 = h

• pr1 and pr2 are surjective
(unless A or B is empty)
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UMP-Prod

A

Z A× B

B

f

g

h

pr1

pr2

For each f : Z → A and g : Z →
B , there exists a unique h : Z →
A × B such that pr1 ◦ h = f and
pr2 ◦ h = g .
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Exponentials

For any sets B , C , we can form their exponential CB , whose elements
are functions B → C :

CB = {w | w : B → C} .

w : B → C w : 1→ CB
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- ũ : A→ CB

Given v : A→ CB

v = λ(a, b).(v a) b
- v : A× B → C

Check Your Understanding

Verify:

• For all u : A×B → C and
v : A→ CB ,
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Disjoint Union
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Disjoint Union

Given sets A,B , we can form their disjoint union A + B , whose
elements are either elements of A or elements of B :

A + B = {inl(a) | a ∈ A} ∪ {inr(b) | b ∈ B}

The inl and inr “tag” the elements, so every element of A + B is either
an element of A or B , but not both.

For each f : A→ Z and g : B → Z , we define a unique
[f , g ] : A + B → Z by:

[f , g ] = (λ inl(a).f (a)

inr(b).g(b))
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Finite Sets

• We’ll write 0 for ∅, because ∅ has zero elements

• As covered, 1 = {0} has one element

•
1 + 1 = {0, }

•
2 + 1 = {0, 1, }

• . . .
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• As covered, 1 = {0} has one element
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For each finite set X , there is a unique natural number n (the cardinality
of X ) such that X is in bijection with n
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Check Your Understanding

• Show a bijection
A× A� A2

for any set A.

• For any natural number n, show a bijection between n and n + 0

• For any natural number n, show a bijection between n and n× 1
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The Natural Numbers

There is a set N of natural numbers.

Every natural number is either 0, or

is of the form m + 1 for some m ∈ N.

1 N0
λm.m+1

Rec-N
recur : (1→ X )→ (X → X )→ (N→ X )

recur x0 g 0 = x0

recur x0 g (m + 1) = g(recur x0 g m)
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Indexed Union

Suppose I is a set, and for each i ∈ I , we have a set Ai .

Then define:∑
i∈I

Ai = {(i , a) | i ∈ I , a ∈ Ai}

X + Y =
∑
i∈2

Ai where A0 = X and A1 = Y

X × Y =
∑
x∈X

Y
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Check Your Understanding

• Formulate a Universal Mapping Property for the (binary) disjoint
union operation

• For any set X , construct a bijection

X �
∑
x∈X

1.

• A sequence in a set X is a countably-infinite, ordered collection
{xi}i∈N. Describe the set of all such sequences in terms of functions.

• Prove for any sets A,B ,C that there is a bijection

(A× C ) + (B × C )→ (A + B)× C
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3 Theory of Subsets



Subsets

A set A is a subset of B – written A ⊆ B – if every element of A is a
also an element of B :

a ∈ A =⇒ a ∈ B .

Example: The sets evens = {2n | n ∈ N} and
odds = {2n + 1 | n ∈ N} are both subsets of N.

Check Your Understanding Verify:

• For all A, ∅ ⊆ A

• For all A, A ⊆ A

• If A ⊆ B and B ⊆ A, then A = B .
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Two ways of capturing the “subset” relation using functions.

Inclusions

If A ⊆ B , then there is a (unique)
function iA : A → B which takes
each a ∈ A to itself:

iA(a) = a ∈ B .

evens

∅ odds N

Characteristic Functions

Each subset A ⊆ B is associated
with a unique function

χA : B → 2

given by

χA = λb.if b ∈ A then 1 else 0

i.e. it returns 1 on all elements of
A, and 0 on all non-elements of A.
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Subset Classification

For any given subset A ⊆ B , these two functions are related. Notice that,
for any a ∈ A, χA(iA(a)) = 1,

i.e. χA ◦ iA is the constant function
(λa.1) : A→ 2.
Let true : 1→ 2 be the element 1 ∈ 2. Recall that !X is the unique
function X → 1. Then, for any A ⊆ B ,

true ◦ !A = χA ◦ iA

A 1

B 2

!A

iA true

χA

There’s a (more complex)

sense in which iA and χA are

the optimal functions satis-

fying this equation
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Powersets

Since we have the correspondence identifying subsets with their
characteristic functions.

A ⊆ B χA : B → 2

we can define the power set of B – denoted P (B) – to be the set 2B of
all functions B → 2, that is, the set of all subsets of B .

Thm. (Cantor) There are no surjections X → P (X ) (for any set X ).
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Comprehension

Given a set B and a function φ : B → 2, we’ll often write

{b ∈ B | φ(b)}

to mean the subset of B whose characteristic function is φ, i.e
{b ∈ B | φ(b)} is the set of all those b ∈ B such that φ(b) = 1.

Example: {
x ∈ R | x2 = 2

}
=
{√

2,−
√

2
}

(here, φ is λx .if x2 = 2 then 1 else 0, and ±
√

2 are the only two values x ∈ R that make φ(x) = 1).
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Fibers

Given a function f : X → Y and an element y ∈ Y , we can form the
fiber of y ,

fibf (y) = {x ∈ X | f (x) = y}

Check Your Understanding

• For f = (λx .x2) : R→ R, calculate fibf (y) for y = 2, y = 0, and
y = −1

• For all f : X → Y , construct a bijection X �
∑

y∈Y fibf (y)
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UMP-Fib

Given a function f : X → Y and some fixed y0 ∈ Y , let W = fibf (y0).

Observe that the inclusion function iW : W ↪→ X satisfies

f ◦ iW = (λx .y0) ◦ iW .

W X Y
iW f

λx .y0

Moreover, W is the largest subset of X with this property : if there’s any
other W ′ ⊆ X such that f ◦ iW ′ = (λx .y0) ◦ iW ′, then W ′ ⊆ W

45 Theory of the Category of Sets Theory of Subsets set Categories



UMP-Fib

Given a function f : X → Y and some fixed y0 ∈ Y , let W = fibf (y0).
Observe that the inclusion function iW : W ↪→ X satisfies

f ◦ iW = (λx .y0) ◦ iW .

W X Y
iW f

λx .y0

Moreover, W is the largest subset of X with this property : if there’s any
other W ′ ⊆ X such that f ◦ iW ′ = (λx .y0) ◦ iW ′, then W ′ ⊆ W

45 Theory of the Category of Sets Theory of Subsets set Categories



UMP-Fib

Given a function f : X → Y and some fixed y0 ∈ Y , let W = fibf (y0).
Observe that the inclusion function iW : W ↪→ X satisfies

f ◦ iW = (λx .y0) ◦ iW .

W X Y
iW f

λx .y0

Moreover, W is the largest subset of X with this property : if there’s any
other W ′ ⊆ X such that f ◦ iW ′ = (λx .y0) ◦ iW ′, then W ′ ⊆ W

45 Theory of the Category of Sets Theory of Subsets set Categories



UMP-Fib

Given a function f : X → Y and some fixed y0 ∈ Y , let W = fibf (y0).
Observe that the inclusion function iW : W ↪→ X satisfies

f ◦ iW = (λx .y0) ◦ iW .

W X Y
iW f

λx .y0

Moreover, W is the largest subset of X with this property : if there’s any
other W ′ ⊆ X such that f ◦ iW ′ = (λx .y0) ◦ iW ′, then W ′ ⊆ W

45 Theory of the Category of Sets Theory of Subsets set Categories



UMP-Fib

Given a function f : X → Y and some fixed y0 ∈ Y , let W = fibf (y0).
Observe that the inclusion function iW : W ↪→ X satisfies

f ◦ iW = (λx .y0) ◦ iW .

W X Y

W ′

iW f

λx .y0

iW ′

Moreover, W is the largest subset of X with this property : if there’s any
other W ′ ⊆ X such that f ◦ iW ′ = (λx .y0) ◦ iW ′, then W ′ ⊆ W

45 Theory of the Category of Sets Theory of Subsets set Categories



Generalization: Equalizers ( UMP-Eqlzr )

Given functions f , g : X → Y , define the equalizer of f and g to be the
set E = {x ∈ X | f (x) = g(x)}.

E has the following property:

• The inclusion function iE : E ↪→ X satisfies f ◦ iE = g ◦ iE

E X Y
iE f

g

• For any other set Z and any function h : Z → X such that f ◦ h = g ◦ h, there
exists a unique function 〈h〉 : Z → E such that h = iE ◦ 〈h〉.
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Check Your Understanding

Given f , g , h as on the previous slide, verify:

• f ◦ iE = g ◦ iE

We’ll define the function 〈h〉 : Z → E demanded by UMP-Eqlzr by

〈h〉 = λz .h(z)

Verify:

• For every z ∈ Z , 〈h〉 (z) ∈ E

• iE ◦ 〈h〉 = h
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Generalization: Fiber Products

Suppose we have sets A,B ,C and functions f : A→ C and g : B → C .
Define the fiber product of f and g (denoted A×C B) to be the set

{(a, b) ∈ A× B | f (a) = g(b)}

A×C B B

A C

pr2=λ(a,b).b

pr1=λ(a,b).a g

f

f ◦ pr1 = g ◦ pr2
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UMP-FibProd

A×C B B

A C

pr2

pr1 g

f

For all sets Z and all functions q1 : Z → A, q2 : Z → B such that f ◦ q1

=

, there exists

a unique function 〈q1, q2〉C : Z → A×C B such that pr1 ◦ 〈q1, q2〉C = q1 and

pr2 ◦ 〈q1, q2〉C = q2

49 Theory of the Category of Sets Theory of Subsets set Categories



UMP-FibProd
Z

A×C B B

A C

pr2

pr1 g

f

For all sets Z

and all functions q1 : Z → A, q2 : Z → B such that f ◦ q1

=

, there exists

a unique function 〈q1, q2〉C : Z → A×C B such that pr1 ◦ 〈q1, q2〉C = q1 and

pr2 ◦ 〈q1, q2〉C = q2

49 Theory of the Category of Sets Theory of Subsets set Categories



UMP-FibProd
Z

A×C B B

A C

q1

q2

pr2

pr1 g

f

For all sets Z and all functions q1 : Z → A, q2 : Z → B

such that f ◦ q1

=

, there exists

a unique function 〈q1, q2〉C : Z → A×C B such that pr1 ◦ 〈q1, q2〉C = q1 and

pr2 ◦ 〈q1, q2〉C = q2

49 Theory of the Category of Sets Theory of Subsets set Categories



UMP-FibProd
Z

A×C B B

A C

q1q1

q2

pr2

pr1 g

f

For all sets Z and all functions q1 : Z → A, q2 : Z → B such that f ◦ q1

= , there exists

a unique function 〈q1, q2〉C : Z → A×C B such that pr1 ◦ 〈q1, q2〉C = q1 and

pr2 ◦ 〈q1, q2〉C = q2

49 Theory of the Category of Sets Theory of Subsets set Categories



UMP-FibProd
Z

A×C B B

A C

q1

q2

pr2

pr1 g

f

For all sets Z and all functions q1 : Z → A, q2 : Z → B such that f ◦ q1

=

g ◦ q2

, there

exists a unique function 〈q1, q2〉C : Z → A×C B such that pr1 ◦ 〈q1, q2〉C = q1 and

pr2 ◦ 〈q1, q2〉C = q2

49 Theory of the Category of Sets Theory of Subsets set Categories



UMP-FibProd
Z

A×C B B

A C

q1

q2

pr2

pr1 g

f

For all sets Z and all functions q1 : Z → A, q2 : Z → B such that f ◦ q1 = g ◦ q2,

there

exists a unique function 〈q1, q2〉C : Z → A×C B such that pr1 ◦ 〈q1, q2〉C = q1 and

pr2 ◦ 〈q1, q2〉C = q2

49 Theory of the Category of Sets Theory of Subsets set Categories



UMP-FibProd
Z

A×C B B

A C

q1

q2

〈q1,q2〉C

pr2

pr1 g

f

For all sets Z and all functions q1 : Z → A, q2 : Z → B such that f ◦ q1 = g ◦ q2, there

exists a unique function 〈q1, q2〉C : Z → A×C B

such that pr1 ◦ 〈q1, q2〉C = q1 and

pr2 ◦ 〈q1, q2〉C = q2

49 Theory of the Category of Sets Theory of Subsets set Categories



UMP-FibProd
Z

A×C B B

A C

q1

q2

〈q1,q2〉C

pr2

pr1 g

f

For all sets Z and all functions q1 : Z → A, q2 : Z → B such that f ◦ q1 = g ◦ q2, there

exists a unique function 〈q1, q2〉C : Z → A×C B such that pr1 ◦ 〈q1, q2〉C

= q1 and

pr2 ◦ 〈q1, q2〉C = q2

49 Theory of the Category of Sets Theory of Subsets set Categories



UMP-FibProd
Z

A×C B B

A C

q1

q2

〈q1,q2〉C

pr2

pr1 g

f

For all sets Z and all functions q1 : Z → A, q2 : Z → B such that f ◦ q1 = g ◦ q2, there

exists a unique function 〈q1, q2〉C : Z → A×C B such that pr1 ◦ 〈q1, q2〉C = q1

and

pr2 ◦ 〈q1, q2〉C = q2

49 Theory of the Category of Sets Theory of Subsets set Categories



UMP-FibProd
Z

A×C B B

A C

q1

q2

〈q1,q2〉C

pr2

pr1 g

f

For all sets Z and all functions q1 : Z → A, q2 : Z → B such that f ◦ q1 = g ◦ q2, there

exists a unique function 〈q1, q2〉C : Z → A×C B such that pr1 ◦ 〈q1, q2〉C = q1 and

pr2 ◦ 〈q1, q2〉C

= q2

49 Theory of the Category of Sets Theory of Subsets set Categories



UMP-FibProd
Z

A×C B B

A C

q1

q2

〈q1,q2〉C

pr2

pr1 g

f

For all sets Z and all functions q1 : Z → A, q2 : Z → B such that f ◦ q1 = g ◦ q2, there

exists a unique function 〈q1, q2〉C : Z → A×C B such that pr1 ◦ 〈q1, q2〉C = q1 and

pr2 ◦ 〈q1, q2〉C = q2

49 Theory of the Category of Sets Theory of Subsets set Categories



UMP-FibProd
Z

A×C B B

A C

q1

q2

〈q1,q2〉C

pr2

pr1 g

f

For all sets Z and all functions q1 : Z → A, q2 : Z → B such that f ◦ q1 = g ◦ q2, there

exists a unique function 〈q1, q2〉C : Z → A×C B such that pr1 ◦ 〈q1, q2〉C = q1 and

pr2 ◦ 〈q1, q2〉C = q2

49 Theory of the Category of Sets Theory of Subsets set Categories



Check Your Understanding

• State UMP-FibProd for the case Z = 1 and interpret it as a
statement describing the elements of A×C B

• For any sets A,B , find a set C and functions f : A→ C , g : B → C
such that A×C B is the cartesian product A× B
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Check Your Understanding

A square of sets and functions
P B

A C

p1

p2

g

f

is called a pullback square

if f ◦ p1 = g ◦ p2 and it satisfies UMP-FibProd : for any Z and any
q1 : Z → A and q2 : Z → B such that f ◦ q1 = g ◦ q2, there exists a
unique h : Z → P such that q1 = p1 ◦ h and q2 = p2 ◦ h.
For any subset X ⊆ Y , show that the square

X 1

Y 2

iX

!X

true

χX

is a pullback square.
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Kernels

Consider the fiber product of f : A→ C with itself:

K = A×C A A

A C

k2=λ(a,a′).a′

k1=λ(a,a′).a f

f

K ⊆ A× A is the set of all pairs (a, a′) such that f (a) = f (a′). k1, k2 is
called the kernel pair of f .
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A C
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Equivalence Relations

The kernel K = {(a, a′) ∈ A× A | f (a) = f (a′)} satisfies three
properties:

• Reflexivity For all a ∈ A, (a, a) ∈ K

• Symmetry If (a, a′) ∈ K , then (a′, a) ∈ K

• Transitivity If (a, a′) ∈ K and (a′, a′′) ∈ K , then (a, a′′) ∈ K .

A subset of A× A satisfying these three conditions is called an
equivalence relation on A.
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Check Your Understanding

Verify:

• R = A× A is an equivalence relation on A

• R = ∆A = {(a, a) | a ∈ A} is an equivalence relation on A

• The set R ⊆ Z× Z given by

{(p, q) ∈ Z× Z | (p − q) is a multiple of 2}

is an equivalence relation.
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Quotients

Given an equivalence relation R on A and an element a ∈ A, define the
equivalence class of a to be the set

[a]R = {a′ ∈ A | (a, a′) ∈ R} ⊆ A

Notice that (a, a′) ∈ R iff [a]R = [a′]R .
Then put

A/R = {[a]R | a ∈ A} .
And write πR for the function (λa.[a]R) : A→ A/R .

Check Your Understanding

Prove that πR is a surjection for any A and R .
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UMP-Quot

Since R ⊆ A× A, we have pr1 = (λ(a, a′).a) : R → A and
pr2 = (λ(a, a′).a′) : R → A.

R A A/R
pr1

pr2

πR

• πR ◦ pr1 = πR ◦ pr2

• If h : A→ Z
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Functions out of the quotient

By UMP-Quot , every function g : A/R → Z is of the form [h] for some
h : A→ Z such that h ◦ pr1 = h ◦ pr2.

In particular,

g = [g ◦ πR ].
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g = [g ◦ πR ].
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Functions out of the quotient

By UMP-Quot , every function g : A/R → Z is of the form [h] for some
h : A→ Z such that h ◦ pr1 = h ◦ pr2. In particular,

g = [g ◦ πR ].

Given h : A→ Z
(λ[a]R .h(a)) : A/R → Z
REQUIRES : if [a]R = [a′]R (i.e. (a, a′) ∈ R), then h(a) = h(a′).
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Quotienting by the Kernel

Given a function f : A→ C with kernel pair K A
k1

k2
, construct the

quotient diagram

K A A/K

C

k1

k2

πK

f

Check Your Understanding Verify that the lambda function λ[a]K .f (a) satisfies the

requirements from the previous slide, and verify f = (λ[a]K .f (a)) ◦ πK .
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Images

Given f : A→ C as before, define the image of f to be the set

im(f ) = {c ∈ C | c = f (a) for some a ∈ A} = {c ∈ C | fibf (c) 6= ∅}

Prop. 6 For f : A→ C with kernel K ,

A/K = {fibf (c) | c ∈ im(f )}

Prop. 7 fibf : im(f )→ A/K is a bijection:

A/K im(f )
λ[a]K .f (a)

fibf
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Prop. 6 For f : A→ C with kernel K ,

A/K = {fibf (c) | c ∈ im(f )}

Prop. 7 fibf : im(f )→ A/K is a bijection:

A/K im(f )
λ[a]K .f (a)

fibf
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Check Your Understanding

• Prove Prop. 6

• Prove Prop. 7

• Prove that [f ] ◦ fibf is equal to the inclusion of im(f ) into C

• Prove that [f ] is injective
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Summary

• Sets and functions between them

• The “algebra of functions”: composition and identity functions

• Special functions which satisfy universal mapping properties

• Special sets which satisfy universal mapping properties

• A notion of “element”, defined in terms of functions

• Constructions of set diagrams, with universal mapping properties

• A notion of “subset”, defined in terms of functions
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Next Time. . .

• The Outer Limits of Set Theory

• Categories

• Concrete Categories

• Abstract Categories
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Thanks for watching!
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