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Premise: A category theory

of strong dinaturality



Basic definitions

Defn. A difunctor on a category C is a functor Cop × C → Set.
Defn. Given difunctors Γ,∆, a strong dinatural transformation α from Γ
to ∆ is a family of maps

αI : Γ(I , I ) → ∆(I , I )

for each object I of C, such that, for every f : C(I , J), h : Γ(I , I ), k : Γ(J , J),
Γ(I , f ) h = Γ(f , J) k implies ∆(I , f ) (αI h) = ∆(f , J) (αJ k)

Fact The identity maps form a strong dinatural transformation.
Fact Strong dinatural transformations are closed under (pointwise)
composition.
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Main example: Church numerals

(n)I : Hom(I , I ) → Hom(I , I )

(n)I = λh → hn

f ◦ h = k ◦ f

=

Hom(I , I )

{∗} , Hom(I , J)

Hom(J , J)

f ◦−

k

h

−◦f
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Notation Write

Γ
⋄−→ ∆ or

∫
I : C

Γ(I , I ) d∆(I , I )

for the set of strong dinatural transformations from Γ to ∆.

[ML78, Chapter IX]
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Notation Write

Γ
⋄−→ ∆ or

∫
I : C

Γ(I , I ) d∆(I , I )

for the set of strong dinatural transformations from Γ to ∆.∫
I :C

Γ(I , I ) d∆(I , I ) =
∑

(diagonal family)

∏
(structural morphism)

. . .
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Why we (might) care:

Category theory for

parametricity



A familiar story. . .

[Wad89]

• Wadler applied Reynolds’s parametricity
result [Rey83] to obtain “free theorems” —
theorems that hold for all values of a type,
regardless of how they’re implemented

• Interesting: parametricity is stated in terms
of relations, but used by instantiating those
relations to functions
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Seems only natural. . .

• t : ∀X .List X → List X

(map f ) ◦ tI = tJ ◦ (map f )

for all f : I → J

• e : ∀X .(X → Bool) → (List X → Bool)

(eI (q ◦ f )) = (eJ q) ◦ (map f )

for all f : I → J , q : J → Bool

Is parametricity just naturality?
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No: This doesn’t work with

mixed variance



Diagonal naturality?

• Consider ∀X .(X → X ) → (X → X ). Hom: Setop × Set → Set, so a
natural transformation α : Hom → Hom would be double indexed over
objects of Set:

α(I ,J) : Hom(I , J) → Hom(I , J)

• Dinatural transformations [DS70],[ML78, Chapter IX] have the right shape:

αI : Hom(I , I ) → Hom(I , I )

but. . .
▶ Their “naturality” condition is super weird: for all f : I → J

for all f ′ : J → I , f ◦ (αI (f
′ ◦ f )) = αJ(f ◦ f ′) ◦ f

▶ Dinaturals don’t compose
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Strong dinaturality returns

Free Theorem For any t : ∀X .(X → X ) → (X → X ), any f : I → J ,
h : I → I , k : J → J ,

f ◦ h = k ◦ f implies f ◦ (tI h) = (tJ k) ◦ f

Free Theorem For any s : ∀X .(X × X → Bool) → (List X → List X ),any
f : I → J , ≺I : I × I → Bool, ≺J : J × J → Bool, xs : List I

(≺J)◦ (f × f ) = (≺I ) implies sJ (≺J) (map f xs) = map f (sI (≺I ) xs)
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So, parametricity is strong

dinaturality, right?



Divergence between strong dinaturality and parametricity

Consider
ϕ : ∀X .((X → X ) → X ) → X

Free Theorem For all f : I → J , p : (I → I ) → I , q : (J → J) → J ,[
∀h k, f ◦h = k◦f implies f (p h) = q k

]
implies f (ϕI p) = ϕJ q

ϕ is a strong dinatural transformation
∫
X ((X → X ) → X ) dX if, for all f , p, q,[

∀r : J → I , f (p(r ◦ f )) = q(f ◦ r)
]

implies f (ϕI p) = ϕJ q

Jacob Neumann Updates on Paranatural Category Theory June 2024 10



What to do?

1 Give up!

2 Rule out types like ∀X .((X → X ) → X ) → X .

[HH15]

3 Give difunctors a true exponential
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Idea: Copy from the theory

of presheaves



Define the diYoneda embedding yy : Cop × C → Cop × C → Set,

yy (I , J) (K , L) = C(I , L)× C(K , J)

Lemma For F : Cop × C → Set,

F (I , J) ∼=
∫
K

C(J ,K )× C(K , I ) dF (K ,K )

strong dinatural in I , J .
Given difunctors S ,T , a “Yoneda calculation” tells us what the exponential ST

should be:

ST (I , J) ∼=
∫
K

C(J ,K )× C(K , I ) dST (K ,K )

∼=
∫
K

C(J ,K )× C(K , I )× T (K ,K ) dS(K ,K )
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Problem: The diYoneda

Lemma is false!



Trying to prove it

Lemma For F : Cop × C → Set,

F (I , I ) ∼=
∫
K C(I ,K )× C(K , I ) dF (K ,K )

strong dinatural in I , J .

✓ x 7→ λK (a, b) → F (b, a) x

✓ ϕ 7→ ϕI (id, id)

✓ x = (λK (a, b) → F (b, a) x)I (id, id)

X ϕ = λK (a, b) → F (b, a) (ϕI (id, id))

Counterexample

(λK (a, b) → (b ◦ a)2) :

∫
K

Set(I ,K )× Set(K , I ) dHomSet(K ,K )
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Moving forward

• Strong dinatural transforms yy(I , I )
⋄−→ F contain more info than just

F (I , I ).
Conj?

HomSet × N ∼=
∫
K

Set(I ,K )× Set(K , I ) dHomSet(K ,K )

• Lots of surrounding theory to build up
▶ Connection to initial algebras: [Uus10, AFS18]
▶ Dual: strong coends, existential types, terminal coalgebras
▶ Strong (co)end calculus, à la [Lor23]
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Thank you!


