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Question: What is the

appropriate notion of

transformation between

difunctors?



Church numerals as endo-transforms of Hom

Consider the difunctor Hom: Cop × C → Set. Then, for each n ∈ N, we
can define the family of maps

λf .f n : Hom(J , J) → Hom(J , J)

indexed over objects J of C.

Jacob Neumann Paranatural Category Theory 28 October 2023 3



I’ll use the term difunctor to refer to functors of the form
Cop × C → Set

Notion of “transformation” between difunctors Γ,∆:
• natural transformation: for every I , J ∈ C, a function
αI ,J : Γ(I , J) → ∆(I , J), satisfying naturality
▶ Doesn’t capture ‘diagonal’ transformations, e.g. the Church numerals

• dinatural transformation: for every J ∈ C, a function
αJ : Γ(J , J) → ∆(J , J), satisfying a “dinaturality condition”.
▶ Too weak—dinaturals don’t compose (in general)

• paranatural transformation: for every J ∈ C, a function
αJ : Γ(J , J) → ∆(J , J), satisfying a “paranaturality condition”.
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Dinatural Transformations

For every i2 ∈ Hom(I0, I1)

Γ(I0, I0) ∆(I0, I0)

Γ(I1, I0) ∆(I0, I1)

Γ(I1, I1) ∆(I1, I1)

αI0

∆(I0,i2)Γ(i2,I0)

Γ(I1,i2)

αI1

∆(i2,I1)
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Dinaturals don’t compose

Γ(I0, I0) ∆(I0, I0) Θ(I0, I0)

Γ(I1, I0) ∆(I1, I0) ∆(I0, I1) Θ(I0, I1)

Γ(I1, I1) ∆(I1, I1) Θ(I1, I1)

αI0
βI0

∆(I0,i2) Θ(I0,i2)Γ(i2,I0)

Γ(I1,i2)

∆(i2,I0)

∆(I1,i2)

αI1 βI1

∆(i2,I1) Θ(i2,I1)
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Defn. Given difunctors Γ,∆, we say a family of maps
αJ : Γ(J , J) → ∆(J , J) is a paranatural transformation from Γ to ∆

and write α : Γ
⋄−→ ∆ if, for every i2 ∈ Hom(I0, I1), the following hexagon

commutes.

Γ(I0, I0) ∆(I0, I0)

P Γ(I0, I1) ∆(I0, I1)

Γ(I1, I1) ∆(I1, I1)

αI0

Γ(I0,i2) ∆(I0,i2)π0

π1

⌟

αI1

Γ(i2,I1) ∆(i2,I1)
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Γ(I0, I0) ∆(I0, I0)

1 Γ(I0, I1) ∆(I0, I1)

Γ(I1, I1) ∆(I1, I1)

αI0

Γ(I0,i2) ∆(I0,i2)γ0

γ1

αI1

Γ(i2,I1) ∆(i2,I1)

“if the diamond commutes, so does the hexagon”

Jacob Neumann Paranatural Category Theory 28 October 2023 10



Some Results

Prop. The Church numerals are paranatural transformations

Hom
⋄−→ Hom

Prop. If α : Γ
⋄−→ ∆ and β : ∆

⋄−→ Θ, then the pointwise-defined

composite (β ◦ α)I := βI ◦ αI is a paranatural transformation Γ
⋄−→ Θ

Defn. Write
⋄
C for the category whose objects are difunctors and whose

morphisms are paranatural transformations.
Prop.

⋄
C has all finite products

Prop.
⋄
C is cartesian closed

Conj.
⋄
C is an elementary topos

Conj. HomHom is a natural numbers object in
⋄
C
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DiYoneda

Defn. The diYoneda embedding yy : Cop × C → ⋄
C is the functor

whose object part is given by

yy (I0, I1) (J0, J1) := Hom(I0, J1)× Hom(J0, I1)

and whose four morphism parts are given by appropriate pre- and
post-compositions.
Lemma For any difunctor ∆: Cop × C → Set, there is a bijection

∆(I , J) ∼= yy(J , I )
⋄−→ ∆

paranatural in I , J .

• Note that I and J are flipped on the right
• To prove this, we construct an αd : yy(I , I )

⋄−→ ∆ for each
d : ∆(I , I ) and vice-versa.
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diYoneda Reasoning

Claim The category of difunctors
⋄
C has exponential objects.

Proof. By “diYoneda reasoning”: for difunctors Γ,∆, suppose their
exponential ∆Γ existed. Then

∆Γ(I , J) ∼= yy(J , I )
⋄−→ ∆Γ diYoneda Lemma

∼= yy(J , I )× Γ
⋄−→ ∆ (desired property)

so now define ∆Γ(I , J) to be yy(J , I )× Γ
⋄−→ ∆, and verify this satisfies

all the necessary properties.
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Have we actually done

anything new here?



Is paranaturality an instance

of naturality?



Question Given difunctors Γ,∆: Cop×C → Set, can we define functors

Γ,∆: C′ → D
(for some appropriately-picked C′,D) such that paranatural

transformations Γ
⋄−→ ∆ are the same thing as natural transformations

Γ → ∆?

• Positive : No need to develop paranatural category theory
separately, diYoneda is just an instance of Yoneda,

⋄
C “is” a presheaf

category

• Negative : Paranatural category theory is indeed a novel branch of
category theory, diYoneda is a distinct result from Yoneda, difunctor
categories may be differently-behaved than presheaf categories
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Further topics in paranatural category theory

• Equivalent formulations of paranaturality

• Categories of diagonal elements (“Γ-structures”)

• “Splice categories”
• Strong (Co)End calculus
▶ Structural ends
▶ Initial algebras and [Uus10]’s Yoneda-like lemma
▶ Structural coends, terminal coalgebras, and bisimulations

• Dependent paranatural transformations (and maybe a dependent
diYoneda Lemma?)
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Applications

• Mathematical framework for categorical semantics of (co)inductive
types (generalizing and dualizing [AFS18])

• Parametricity: Paranatural transformations encode impredicative
‘universal’ and ‘existential’ types (e.g. from System F)
▶ Paranatural transformations correspond to parametrically polymorphic

functions, with the paranaturality condition matching the ‘free theorems’ of
[Wad89]

▶ Structural coends encode ‘abstract data structures’

• Difunctor models of type theory
▶ Uses diYoneda for “lifting Grothendieck universes”, à la [HS99]
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Sources

• Collection of links: jacobneu.github.io/research/paranat

• arXiv preprint: arxiv.org/abs/2307.09289
• HoTTEST talk:
▶ Video: youtube.com/watch?v=X4v5HnnF2-o
▶ Slides: research/slides/HoTTEST-2022.pdf

• Midlands Graduate School talk: research/slides/MGS-2023.pdf

• CMU HoTT Seminar Talk: research/slides/CMU-2023.pdf

• Lean formalization (in progress) will be made public soon!
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Thank you!


