Paranatural Category Theory

Jacob Neumann University of Nottingham CT Octoberfest 28 October 2023

Question: What is the appropriate notion of transformation between difunctors?

Consider the difunctor Hom: $\mathbb{C}^{op} \times \mathbb{C} \to Set$. Then, for each $n \in \mathbb{N}$, we can define the family of maps

$$\lambda f.f^n$$
 : Hom $(J,J) \to$ Hom (J,J)

indexed over objects J of \mathbb{C} .

I'll use the term difunctor to refer to functors of the form $\mathbb{C}^{op}\times\mathbb{C}\to\mathsf{Set}$

Notion of "transformation" between difunctors Γ, Δ :

- **natural transformation**: for every $I, J \in \mathbb{C}$, a function $\alpha_{I,J} \colon \Gamma(I,J) \to \Delta(I,J)$, satisfying naturality
 - ► Doesn't capture 'diagonal' transformations, e.g. the Church numerals
- dinatural transformation: for every J ∈ C, a function α_J: Γ(J, J) → Δ(J, J), satisfying a "dinaturality condition".

 Too weak—dinaturals don't compose (in general)
- paranatural transformation: for every $J \in \mathbb{C}$, a function $\alpha_J \colon \Gamma(J, J) \to \Delta(J, J)$, satisfying a "paranaturality condition".

For every $i_2 \in \text{Hom}(I_0, I_1)$

I'll use the term difunctor to refer to functors of the form $\mathbb{C}^{op}\times\mathbb{C}\to\mathsf{Set}$

Notion of "transformation" between difunctors Γ, Δ :

- **natural transformation**: for every $I, J \in \mathbb{C}$, a function $\alpha_{I,J} \colon \Gamma(I,J) \to \Delta(I,J)$, satisfying naturality
 - ► Doesn't capture 'diagonal' transformations, e.g. the Church numerals
- dinatural transformation: for every J ∈ C, a function α_J: Γ(J, J) → Δ(J, J), satisfying a "dinaturality condition".

 Too weak—dinaturals don't compose (in general)
- paranatural transformation: for every $J \in \mathbb{C}$, a function $\alpha_J \colon \Gamma(J, J) \to \Delta(J, J)$, satisfying a "paranaturality condition".

I'll use the term difunctor to refer to functors of the form $\mathbb{C}^{op}\times\mathbb{C}\to\mathsf{Set}$

Notion of "transformation" between difunctors Γ, Δ :

- **natural transformation**: for every $I, J \in \mathbb{C}$, a function $\alpha_{I,J} \colon \Gamma(I,J) \to \Delta(I,J)$, satisfying naturality
 - ► Doesn't capture 'diagonal' transformations, e.g. the Church numerals
- dinatural transformation: for every J ∈ C, a function α_J: Γ(J, J) → Δ(J, J), satisfying a "dinaturality condition".

 Too weak—dinaturals don't compose (in general)
- paranatural transformation: for every $J \in \mathbb{C}$, a function $\alpha_J \colon \Gamma(J, J) \to \Delta(J, J)$, satisfying a "paranaturality condition".

Defn. Given difunctors Γ, Δ , we say a family of maps $\alpha_J \colon \Gamma(J, J) \to \Delta(J, J)$ is a **paranatural transformation** from Γ to Δ and write $\alpha \colon \Gamma \xrightarrow{\diamond} \Delta$ if, for every $i_2 \in \text{Hom}(I_0, I_1)$, the following hexagon commutes.

"if the diamond commutes, so does the hexagon"

Prop. The Church numerals are paranatural transformations Hom $\stackrel{\diamond}{\rightarrow}$ Hom

Prop. If $\alpha \colon \Gamma \xrightarrow{\diamond} \Delta$ and $\beta \colon \Delta \xrightarrow{\diamond} \Theta$, then the pointwise-defined composite $(\beta \circ \alpha)_I := \beta_I \circ \alpha_I$ is a paranatural transformation $\Gamma \xrightarrow{\diamond} \Theta$ **Defn.** Write $\mathring{\mathbb{C}}$ for the category whose objects are difunctors and whose morphisms are paranatural transformations.

- Prop. $\hat{\mathbb{C}}$ has all finite products
- Prop. $\mathring{\mathbb{C}}$ is cartesian closed
- Conj. $\mathring{\mathbb{C}}$ is an elementary topos

Conj. Hom^{Hom} is a natural numbers object in $\mathring{\mathbb{C}}$

DiYoneda

Defn. The **diYoneda embedding yy** : $\mathbb{C}^{op} \times \mathbb{C} \to \hat{\mathbb{C}}$ is the functor whose object part is given by

yy
$$(I_0, I_1)$$
 $(J_0, J_1) := Hom(I_0, J_1) \times Hom(J_0, I_1)$

and whose four morphism parts are given by appropriate pre- and post-compositions.

Lemma For any difunctor $\Delta : \mathbb{C}^{op} \times \mathbb{C} \to Set$, there is a bijection $\Delta(I, J) \cong \mathbf{yy}(J, I) \xrightarrow{\diamond} \Delta$

paranatural in I, J.

- Note that *I* and *J* are flipped on the right
- To prove this, we construct an α_d: yy(I, I) → Δ for each
 d: Δ(I, I) and vice-versa.

Claim The category of difunctors \mathring{C} has exponential objects. *Proof.* By "diYoneda reasoning": for difunctors Γ, Δ , suppose their exponential Δ^{Γ} existed. Then

$$\Delta^{\Gamma}(I, J) \cong \mathbf{yy}(J, I) \xrightarrow{\diamond} \Delta^{\Gamma} \qquad \qquad \text{diYoneda Lemma} \\ \cong \mathbf{yy}(J, I) \times \Gamma \xrightarrow{\diamond} \Delta \qquad \qquad \text{(desired property)}$$

so now define $\Delta^{\Gamma}(I, J)$ to be $\mathbf{yy}(J, I) \times \Gamma \xrightarrow{\diamond} \Delta$, and verify this satisfies all the necessary properties.

Have we actually done anything new here?

Is paranaturality an instance of naturality?

Question Given difunctors $\Gamma, \Delta \colon \mathbb{C}^{op} \times \mathbb{C} \to Set$, can we define functors $\overline{\Gamma}, \overline{\Delta} \colon \mathbb{C}' \to \mathbb{D}$

(for some appropriately-picked \mathbb{C}', \mathbb{D}) such that paranatural transformations $\Gamma \xrightarrow{\diamond} \Delta$ are the same thing as natural transformations $\overline{\Gamma} \to \overline{\Delta}$?

- Positive: No need to develop paranatural category theory separately, diYoneda is just an instance of Yoneda, C "is" a presheaf category
- Negative : Paranatural category theory is indeed a novel branch of category theory, diYoneda is a distinct result from Yoneda, difunctor categories may be differently-behaved than presheaf categories

- Equivalent formulations of paranaturality
- Categories of diagonal elements ("Γ-structures")
- "Splice categories"
- Strong (Co)End calculus
 - ► Structural ends
 - ► Initial algebras and [Uus10]'s Yoneda-like lemma
 - ► Structural coends, terminal coalgebras, and bisimulations
- Dependent paranatural transformations (and maybe a dependent diYoneda Lemma?)

- Mathematical framework for categorical semantics of (co)inductive types (generalizing and dualizing [AFS18])
- Parametricity: Paranatural transformations encode impredicative 'universal' and 'existential' types (e.g. from System F)
 - Paranatural transformations correspond to parametrically polymorphic functions, with the paranaturality condition matching the 'free theorems' of [Wad89]
 - Structural coends encode 'abstract data structures'
- Difunctor models of type theory
 - ► Uses diYoneda for "lifting Grothendieck universes", à la [HS99]

- Collection of links: jacobneu.github.io/research/paranat
- arXiv preprint: arxiv.org/abs/2307.09289
- HoTTEST talk:
 - ► Video: youtube.com/watch?v=X4v5HnnF2-o
 - ► Slides: research/slides/HoTTEST-2022.pdf
- Midlands Graduate School talk: research/slides/MGS-2023.pdf
- CMU HoTT Seminar Talk: research/slides/CMU-2023.pdf
- Lean formalization (in progress) will be made public soon!

[AFS18] Steve Awodey, Jonas Frey, and Sam Speight. Impredicative encodings of (higher) inductive types. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pages 76–85, 2018.

[HS99] Martin Hofmann and Thomas Streicher. Lifting grothendieck universes. *Unpublished note*, 199:3, 1999.

[Uus10] Tarmo Uustalu.

A note on strong dinaturality, initial algebras and uniform parameterized fixpoint operators. In *FICS*, pages 77–82, 2010.

[Wad89] Philip Wadler.

Theorems for free!

In *Proceedings of the fourth international conference on Functional programming languages and computer architecture*, pages 347–359, 1989.

Thank you!