A Crash Course on Yoneda Reasoning

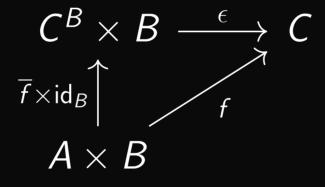
Jacob Neumann University of Nottingham MGS 2024 Participant Talk

11 April 2024



Cool Structure: Exponentials

Given two sets \overline{B} , \overline{C} , I can form the set $\overline{C^B}$ of all functions $\overline{B} \to \overline{C}$. I can define the function $\epsilon \colon \overline{C^B} \times B \to \overline{C}$ which sends (g, b) to g(b). This satisfies the universal property of the exponential: for any $f \colon A \times B \to \overline{C}$, there is a unique function $\overline{f} \colon A \to \overline{C}^B$ such that



commutes.

What about **groups** instead of sets?

Jacob Neumann

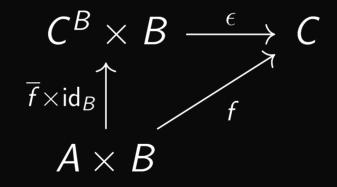
A Crash Course on Yoneda Reasoning

11 April 2024 1

Cool Structure: Exponentials

Given two groups B, C, I can form the set (group?) C^B of all homomorphisms $B \to C$. I can define the function $\epsilon \colon C^B \times B \to C$ which sends (g, b) to g(b).

Does this satisfy the universal property of the exponential: for any $f: A \times B \to C$, there is a unique homomorphism $\overline{f}: A \to C^B$ such that



What about **groups** instead of sets?

Jacob Neumann

No!

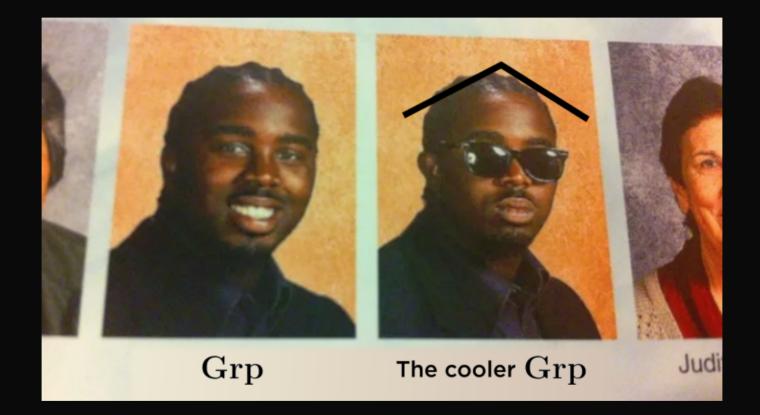
Thm. The category Grp of groups and group homomorphisms is *not* a cartesian closed category.

Lemma In a cartesian closed category C with an initial object $\mathbf{0}$, any morphism $C(A, \mathbf{0})$ is an isomorphism.

Fact The trivial group $\mathbf{0}$ is both initial and terminal in the category of groups. So any group G has a unique morphism $C(G, \mathbf{0})$.

Conclusion: Grp doesn't have exponentials

Idea: Make a better version of Grp that does have these things



Jacob Neumann

The category of presheaves

For any category C, define the category Psh(C) of presheaves on C to be the category whose

- Objects are functors $\mathrm{C}^{\mathrm{op}} \to \mathsf{Set}$
- Morphisms are natural transformations.

There is a functor $\mathbf{y} \colon C \to \mathbf{Psh}(C)$ taking each object A of C to the **representable presheaf** $\mathbf{y}A$. Thm (Yoneda) For any objects A, B of C, the morphism part of the \mathbf{y} functor gives an isomorphism

 $C(A, B) \cong (Psh(C))(yA, yB).$

The Yoneda Lemma: the fundamental lemma of category theory

Lemma (Yoneda) For any presheaf $F : \mathbb{C}^{op} \rightarrow Set$, there is an isomorphism

natural in A.

Yoneda Reasoning: To define a presheaf F having a nice universal property in **Psh**(C),

- **1** Assume you already have *F*
- 2 Apply the Yoneda Lemma
- 8 Rewrite using the desired universal property
- **4** Obtain what the definition *must be*

Example 1: Products in **Psh**(C)

Claim Psh(C) has products: for any presheaves F, G, there is a presheaf $F \times G$ such that

 $(Psh(C))(H, F \times G) \cong (Psh(C))(H, F) \times (Psh(C))(H, G)$ (* naturally in *H*. By Yoneda Reasoning:

> $(F \times G)(A) \cong (\mathbf{Psh}(C))(\mathbf{y}A, F \times G)$ (YL) $\cong (\mathbf{Psh}(C))(\mathbf{y}A, F) \times (\mathbf{Psh}(C))(\mathbf{y}A, G)$ (*) $\cong (F A) \times (G A)$ (YL)

Now take $(F \times G)(A) := F(A) \times G(A)$, prove this has property (*).

Example 2: Exponentials in Psh(C)

Claim Psh(C) has exponentials: for any presheaves F, G, there is a presheaf G^F such that

 $(\mathsf{Psh}(\mathbf{C}))(H, G^F) \cong (\mathsf{Psh}(\mathbf{C}))(H \times F, G)$ (**)

naturally in *H*. By Yoneda Reasoning:

 $(G^{F})(A) \cong (\mathbf{Psh}(\mathbf{C}))(\mathbf{y}A, G^{F}) \tag{YL}$ $\cong (\mathbf{Psh}(\mathbf{C}))(\mathbf{y}A \times F, G) \tag{YL}$

Now take $(G^{F})(A) := (Psh(C))(yA \times F, G)$, prove this has property (**).

Question: Is there Yoneda machinery for verifying the definition correct?

Already have it for representables

Want:

$$(\mathsf{Psh}(C))(H, G^{\mathsf{F}}) \cong (\mathsf{Psh}(C))(H \times \mathsf{F}, G)$$

Have it when $H = \mathbf{y}A$:
$$(\mathsf{Psh}(C))(\mathbf{y}A, G^{\mathsf{F}}) \cong G^{\mathsf{F}}(A) := (\mathsf{Psh}(C))(\mathbf{y}A \times \mathsf{F}, G)(***)$$

Jacob Neumann

Want: fit holds for all representables, it holds for al presheaves

The Co-Yoneda Lemma

Lemma Every presheaf *H* is the colimit of representable presheaves: $H \cong \operatorname{colim}_{(A,a): \int H} \mathbf{y}A$

 $(\mathsf{Psh}(\mathbf{C}))(H, G^{\mathsf{F}}) \cong (\mathsf{Psh}(\mathbf{C})) \left(\operatorname{colim}_{(A,a): \ f \ H} \mathbf{y}A, G^{\mathsf{F}} \right)$ $\cong \lim_{(A,a): \ \int H} (\mathsf{Psh}(\mathbf{C}))(\mathbf{y}A, G^F)$ $\cong \lim_{(A,a): \ \int H} (\mathbf{Psh}(\mathbf{C}))(\mathbf{y}A \times F, G)$ $\cong (\mathsf{Psh}(\mathbf{C})) \left(\operatorname{colim}_{(A,a): \ \int H} \mathbf{y} A \times F, G \right)$ $\mathcal{L} \cong (\mathbf{Psh}(\mathbf{C})) \left(\left(\operatorname{colim}_{(A,a): \ \int H} \mathbf{y} A \right) \times F, G \right)$ \cong (**Psh**(C))($H \times F, G$)



- Presheaf categories rich, other categories poor
 Yoneda tells you what your definitions should be
- CoYoneda helps vouch for the answer Yoneda gives

Thank you!