

Path Induction

Yoneda Lemma

Directed TT in the Category Model

Univalence

Free Theorems (Parametricity)

Jacob Neumann

A Sampling of Synthetic 1-Category Theory

Warning: Work in progress

Preprint: jacobneu.github.io/HoTT-UF-2024/preprint

O Setting: The Category Model

[HS95] define the **groupoid model of type theory** as a model of type theory (a CwF) with

- Con = Grpd
- Ty $\Gamma = [\Gamma, Grpd]$
- . . .

• . . .

We **polarize** this model, obtaining the **category model of type theory**,

- Con = Cat
- Ty $\Gamma = [\Gamma, Cat]$

Goal: Develop this as a model of directed type theory and do synthetic (1-)category theory

The *opposite* operation on categories furnishes us with two 'negation' operations, one on **contexts** (with similar rules as [LH11]):

$$\frac{\Gamma: \operatorname{Con}}{\Gamma^{-}: \operatorname{Con}} \quad \frac{\gamma: \operatorname{Sub} \Delta \Gamma}{\gamma^{-}: \operatorname{Sub} (\Delta^{-}) (\Gamma^{-})} \qquad \operatorname{Cat} \xrightarrow{(-)^{\operatorname{op}}} \operatorname{Cat}$$

and one on **types** (same rule as in [Nor19]):

$$\frac{A: \operatorname{Ty} \Gamma}{A^{-}: \operatorname{Ty} \Gamma} \qquad \Gamma \xrightarrow{A} \operatorname{Cat} \xrightarrow{(-)^{\operatorname{op}}} \operatorname{Cat}$$

These are tied together by the **negative context extension** operation: $\frac{\Gamma: \text{ Con } A: \text{ Ty}(\Gamma^{-})}{\Gamma \triangleright^{-} A: \text{ Con }} \quad \text{Sub } \Delta (\Gamma \triangleright^{-} A) \cong \sum \text{ Tm}(\Delta^{-}, A[\gamma^{-}]^{-})$

 γ : Sub Δ Γ

4

The deep polarization allows us to formulate Π-types (also following [LH11]):

$$\frac{A: \operatorname{Ty}(\Gamma^{-}) \quad B: \operatorname{Ty}(\Gamma \triangleright^{-} A)}{\Pi(A, B): \operatorname{Ty} \Gamma}$$

$$app : \operatorname{Tm}(\Gamma, \Pi(A, B)) \cong \operatorname{Tm}(\Gamma \triangleright^{-} A, B) : \lambda$$

Adapting the definition of identity types in the groupoid model, we get **hom types**

$$\frac{A: \operatorname{Ty} \Gamma \quad t: \operatorname{Tm}(\Gamma, A^{-}) \quad t': \operatorname{Tm}(\Gamma, A)}{\operatorname{Hom}_{A}(t, t'): \operatorname{Ty} \Gamma}$$

(note the polarities).

- Hom types are not symmetric (in general): in the empty context (where types are categories and terms are objects), we can come up with A, t, t' such that Hom_A(t, t') is inhabited but Hom_A(t', t) isn't.
- Note: hom types can be iterated. In the category model, homs between homs are symmetric and unique, i.e. form an equivalence relation. We'll denote this Id (,).

1 Directed Path Induction

Recall the rules for introducing and eliminating identity types:

$$t: \operatorname{Tm}(\Gamma, A)$$

$$M: \operatorname{Ty}(\Gamma \triangleright (z : A) \triangleright \operatorname{Id}_{A}(t, z))$$

$$m: \operatorname{Tm}(\Gamma, M[t, \operatorname{refl}])$$

$$t: \operatorname{Tm}(\Gamma, A)$$

$$p: \operatorname{Id}_{A}(t, t')$$

$$J_{M} m t p: \operatorname{Tm}(\Gamma, M[t', p])$$

Goal: *Directed path induction* for hom types

Problem: How do we type refl?

$\frac{t: \operatorname{Tm}(\Gamma, A)}{\operatorname{refl}: \operatorname{Tm}(\Gamma, \operatorname{Hom}_{A}(t, t))}$

Jacob Neumann

A Sampling of Synthetic 1-Category Theory

$\frac{t: \operatorname{Tm}(\Gamma, A^{-})}{\operatorname{refl}: \operatorname{Tm}(\Gamma, \operatorname{Hom}_{A}(t, t))}$

How do we make *t* both positive and negative?

[Nor19] gets around this by using *core types*, which can also be interpreted in the category model:

$$\frac{A: \operatorname{Ty} \Gamma}{A^{0}: \operatorname{Ty} \Gamma} \qquad \Gamma \xrightarrow{A} \operatorname{Cat} \xrightarrow{\operatorname{core}} \operatorname{Grpd} \longrightarrow \operatorname{Cat}$$

A term $t: Tm(\Gamma, A^0)$ can be turned into either a term of type A^- or A, allowing us to introduce refl and state directed path induction.

Problem: This only allows us to prove things about homs *based at a term of type* A^0 , not arbitrary homs.

Our solution is to instead work in **neutral contexts**, i.e. groupoids. In a neutral context, we can coerce between A and A^- : Γ : NeutCon a: Tm(Γ , A^s)

$$-a: \operatorname{Tm}(\Gamma, A^{-s})$$

$$\frac{t: \operatorname{Tm}(\Gamma, A^{-})}{\operatorname{refl}_{t}: \operatorname{Tm}(\Gamma, \operatorname{Hom}_{A}(t, -t))} \qquad \frac{t': \operatorname{Tm}(\Gamma, A)}{\operatorname{refl}_{t'}: \operatorname{Tm}(\Gamma, \operatorname{Hom}_{A}(-t', t))}$$

Note: Neutral contexts don't force symmetry

(counterexample was in empty context, which is neutral)

$$\frac{t: \operatorname{Tm}(\Gamma, A^{-})}{M: \operatorname{Ty}(\Gamma \triangleright^{+}(z: A) \triangleright^{+} \operatorname{Hom}_{A}(t, z))} \frac{t': \operatorname{Tm}(\Gamma, A)}{p: \operatorname{Tm}(\Gamma, \operatorname{Hom}_{A}(t, t'))}$$
$$\frac{m: \operatorname{Tm}(\Gamma, M[-t, \operatorname{refl}_{t}])}{\operatorname{J}_{M}^{+} m t' p: \operatorname{Tm}(\Gamma, M[t', p])}$$

Jacob Neumann

A Sampling of Synthetic 1-Category Theory

Given t, t': $\text{Tm}(\Gamma, A^-)$ and t'': $\text{Tm}(\Gamma, A)$ with homs p: $\text{Hom}_A(t, t')$ and q: $\text{Hom}_A(-t', t'')$, we can define $p \cdot q$: $\text{Hom}_A(t, t'')$ by directed path induction on q:

$$p \cdot \text{refl} = p.$$

- Can prove associativity (up to identity types between homs) by directed path induction
- One unit law, $p \cdot refl = p$, holds definitionally, other provable by directed path induction on p.

2 Connections

Connection #1: the Dependent Yoneda Lemma(s)

(inspired by [RS17])

Lemma For any $F : \mathbb{C} \to \text{Set}$ and $G : (\int F) \to \text{Set}$, there is an isomorphism

$$G(I,\phi) \cong \int_{J:\mathbb{C}} (j:\mathbb{C}(I,J)) \to G(J,Fj\phi)$$

natural in (I, ϕ) .

Instantiate for
$$F = \text{Hom}(I, -)$$
 and $\phi = \text{id}_I$:
 $G(I, \text{id}_I) \cong \int_{J:\mathbb{C}} (j: \mathbb{C}(I, J)) \to G(J, j \circ \text{id}_I)$

$$M[-t, \operatorname{refl}_t] \xrightarrow[\operatorname{ev_refl}]{J_M^+} \int_{t':A} (p: \operatorname{Hom}_A(t, t')) \to M[t', p])$$

Connection #2: (Trunctated) Directed Univalence

We have $U: Ty \bullet$, given by the category Set. For each $X: Tm(\bullet, U)$, we get $El(X): Ty \bullet$, which is interpreted as the discrete category on X.

Given sets X, Y, i.e. X, Y: $Tm(\bullet, U)$, the hom type $Hom_U(X, Y)$: $Ty\bullet$ is interpreted as the discrete category on the set $X \to Y$.

Given sets X, Y, i.e. X, Y: $Tm(\bullet, U)$, the hom type $Hom_U(X, Y)$: $Ty\bullet$ is interpreted as the discrete category on the set $X \to Y$.

$$\mathsf{Tm}(ullet,\mathsf{El}(X) o \mathsf{El}(Y)))\cong\mathsf{Tm}(\mathsf{El}(X),\mathsf{El}(Y))\ \cong X o Y$$

We can internalize this equivalence between $\text{Hom}_{U}(X, Y)$ and $El(X) \rightarrow El(Y)$:

hom-to-func: $\operatorname{Tm}(\bullet, \operatorname{Hom}_{U}(X, Y) \to (\operatorname{El}(X) \to \operatorname{El}(Y)))$ func-to-hom: $\operatorname{Tm}(\bullet, (\operatorname{El}(X) \to \operatorname{El}(Y)) \to \operatorname{Hom}_{U}(X, Y))$

Note that hom-to-func can be defined by directed path induction.

Future work: Un-truncated version

Connection #3: Naturality for Free!

Given
$$C, D$$
: Ty \bullet and f : Tm($\bullet, C \to D$), define for a given
 c : Tm(\bullet, C^-) and c' : Tm(\bullet, C)
map_f: Tm($\bullet, \text{Hom}_C(c, c')$) \to Tm($\bullet, \text{Hom}_D((f\$c), (f\$c'))$)
(where $f\$c = (app \ f)[c]$: Tm(Γ, D)) by directed path induction:
map_f refl_c = refl_{f\\$c}: Tm($\bullet, \text{Hom}_D((f\$c), (f\$c))$).

Naturality for free!

Given another $g: \operatorname{Tm}(\bullet, C \to D)$ and any $\alpha: \operatorname{Tm}(\bullet, \Pi(c : C, \operatorname{Hom}_D((f c), (g c))))$, we can construct a term of type

$$\mathsf{Id}_{\mathsf{Hom}_D((f\$c),(g\$c'))}\left(\alpha_c \cdot (\mathsf{map}_g p), (\mathsf{map}_f p) \cdot \alpha_{c'}\right)$$

Again by directed path induction, on *p*:

 $map_g refl = refl$ $\alpha_c \cdot refl = \alpha_c$ $map_f refl = refl$

A Sampling of Synthetic 1-Category Theory

Future work: More free theorems

 [HS95] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. *Twenty-five years of constructive type theory (Venice, 1995)*, 36:83–111, 1995.

[LH11] Daniel R Licata and Robert Harper. 2-dimensional directed dependent type theory. 2011.

[Nor19] Paige Randall North.

Towards a directed homotopy type theory. *Electronic Notes in Theoretical Computer Science*, 347:223–239, 2019.

[RS17] Emily Riehl and Michael Shulman. A type theory for synthetic ∞-categories. arXiv preprint arXiv:1705.07442, 2017.

Thank you!

jacobneu.github.io/HoTT-UF-2024/preprint jacobneu.github.io/HoTT-UF-2024/slides