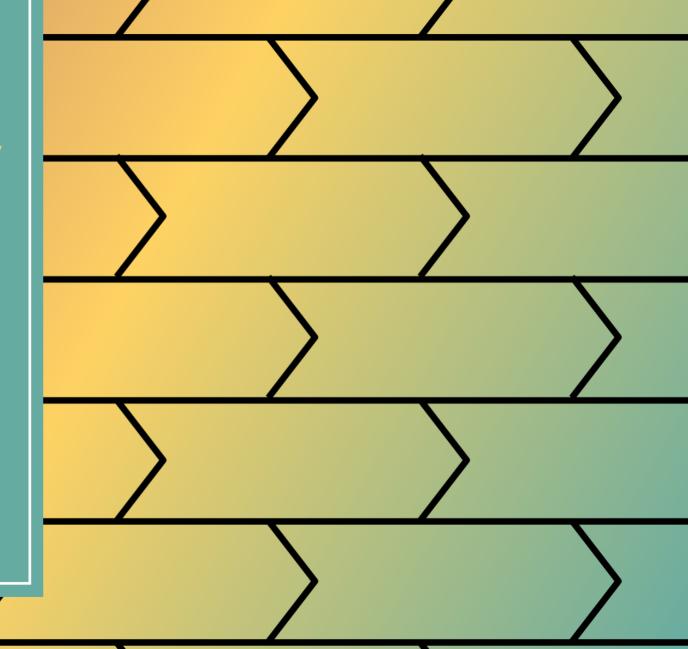
### Paranatural Category Theory

Jacob Neumann University of Nottingham CMU HoTT Seminar 22 September 2023



# Question of the day: Where have I seen this before?

- 0 Category-Theoretic Church Numerals
- 1 Parametric Polymorphism
- 2 Basic Paranatural CT
- 3 Difunctor Models of Type Theory



- Collection of links: jacobneu.github.io/research/paranat
- arXiv preprint: arxiv.org/abs/2307.09289
- HoTTEST talk:
  - Video: youtube.com/watch?v=X4v5HnnF2-o
  - Slides: research/slides/HoTTEST-2022.pdf
- Midlands Graduate School talk: research/slides/MGS-2023.pdf
- Lean formalization (in progress) will be made public soon!

# O Category-Theoretic Church Numerals

### $\overline{n}$ := $\lambda f.f^n$

Jacob Neumann

Paranatural Category Theory

22 September 2023

4

# What kind of thing is $\overline{n}$ ?

$$\overline{n}$$
 : Hom $(I, I) \rightarrow$  Hom $(I, I)(\overline{n})_I$  : Hom $(I, I)$ 

### Goal Articulate a condition on this data, such that

- "Soundness": every  $\overline{n}$  satisfies it
- "Completeness": you can prove the  $\eta$  law for  $\mathbb N$  from it

### Hom : $\mathbb{C}^{op} \times \mathbb{C} \to Set$ , "Hom is a difunctor on $\mathbb{C}$ "

So a natural transformation Hom  $\to$  Hom would have components indexed by  $\mathbb{C}^{op}\times\mathbb{C}.$ 





Jacob Neumann

Paranatural Category Theory

22 September 2023 7

Let  $F: A \times B \times B^{op} \to D$  and  $G: A \times C \times C^{op} \to D$  be functors. A family of morphisms

 $\alpha_{a,b,c}$ :  $F(a,b,b) \rightarrow G(a,c,c)$ 

for  $a \in A$ ,  $b \in B$ , and  $c \in C$  is said to be **natural**, or more precisely ordinary-natural in a and extranatural in b and c, if the following hold.





Jacob Neumann

Paranatural Category Theory

22 September 2023 9

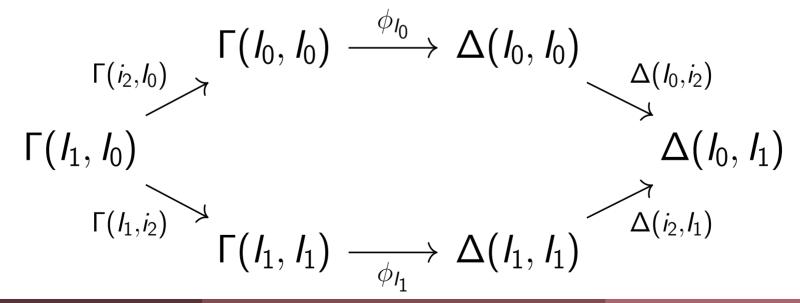
# We need a *diagonal* notion of transformation

#### **Dinatural Transformations**

## For $\Gamma, \Delta : \mathbb{C}^{op} \times \mathbb{C} \to Set$ , a **dinatural transformation** from $\Gamma$ to $\Delta$ is a family of maps

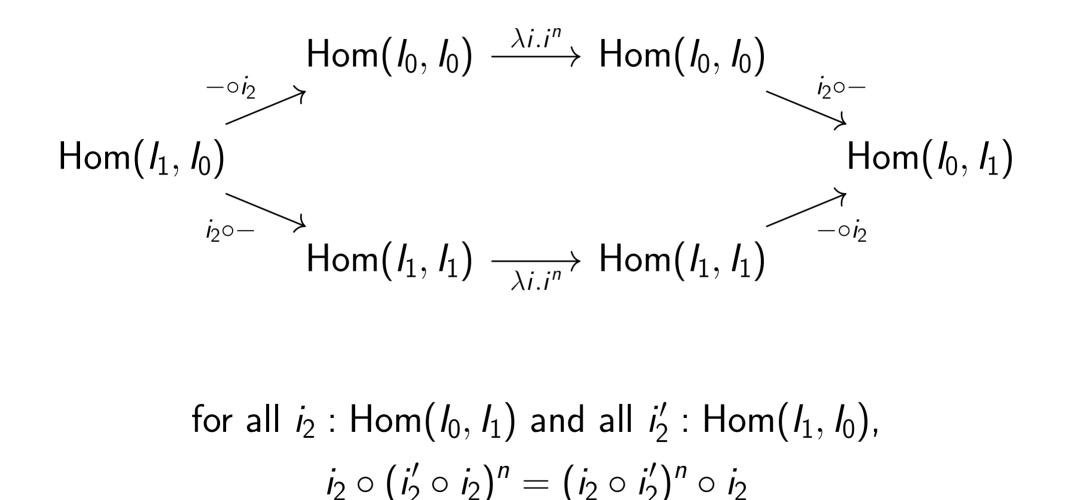
$$\phi_I$$
 :  $\Gamma(I,I) \rightarrow \Delta(I,I)$ 

indexed by objects I of  $\mathbb{C}$ , such that, for every  $i_2$ : Hom $(I_0, I_1)$ , the following hexagon commutes.



Jacob Neumann

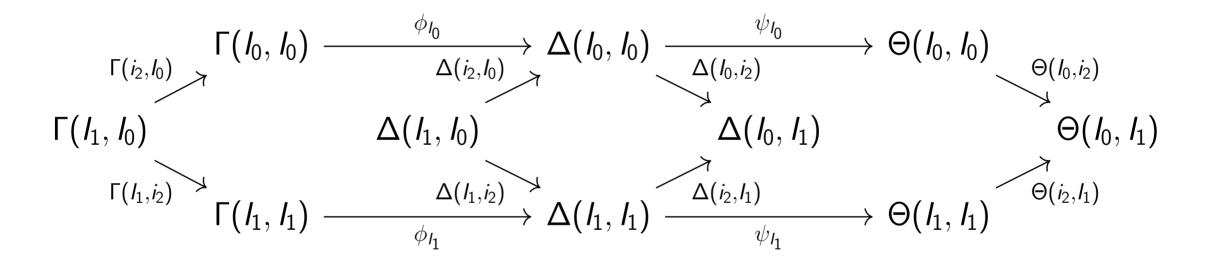
#### Endo-dinatural Transformations of Hom



Jacob Neumann

Paranatural Category Theory

- Dinaturality condition doesn't seem to be saying anything worthwhile
  - ▶ No hope of proving  $\eta$
- Dinaturals don't compose
  - $\blacktriangleright \overline{m \cdot n} = \overline{m} \circ \overline{n}$



- Dinaturality condition doesn't seem to be saying anything worthwhile
  - ▶ No hope of proving  $\eta$
- Dinaturals don't compose
  - $\blacktriangleright \overline{m \cdot n} = \overline{m} \circ \overline{n}$





Jacob Neumann

Paranatural Category Theory

22 September 2023 15

For  $\Gamma, \Delta : \mathbb{C}^{op} \times \mathbb{C} \to Set$ , a paranatural transformation (known as a strong dinatural transformation in the literature) from  $\Gamma$  to  $\Delta$  is a family of maps

 $\phi_I$  :  $\Gamma(I,I) \rightarrow \Delta(I,I)$ 

indexed by objects I of  $\mathbb{C}$ , such that, for every  $g_0 \colon \Gamma(I_0, I_0)$ ,  $g_1 \colon \Gamma(I_1, I_1)$ and  $i_2 \colon \text{Hom}(I_0, I_1)$  such that

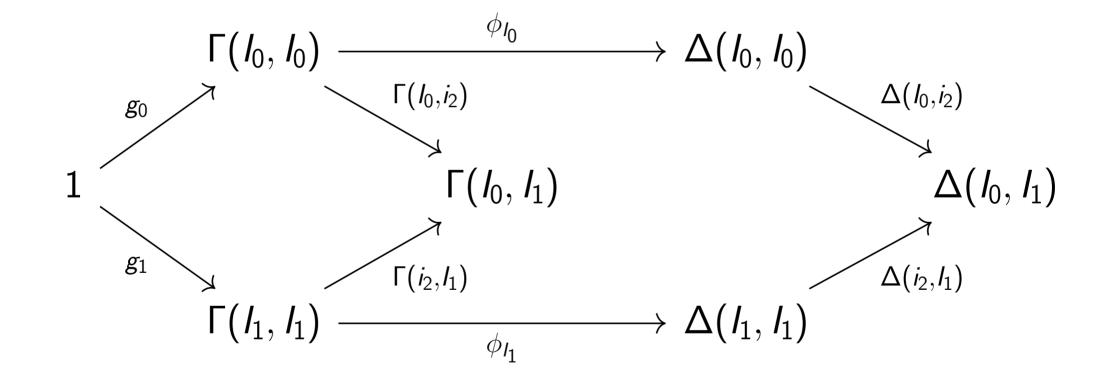
$$\Gamma(I_0, i_2) g_0 = \Gamma(i_2, I_1) g_1$$

it is the case that

$$\Delta(I_0, i_2) (\phi_{I_0} g_0) = \Delta(I_1, i_2) (\phi_{I_1} g_1).$$

NotationWrite  $\phi: \Gamma \xrightarrow{\diamond} \Delta$  to mean that  $\phi$  is a paranaturaltransformation from  $\Gamma$  to  $\Lambda$ Jacob NeumannParanatural Category Theory22

### if the diamond commutes, so does the hexagon



For  $\Gamma, \Delta : \mathbb{C}^{op} \times \mathbb{C} \to Set$ , a paranatural transformation (known as a strong dinatural transformation in the literature) from  $\Gamma$  to  $\Delta$  is a family of maps

 $\phi_I$  :  $\Gamma(I,I) \rightarrow \Delta(I,I)$ 

indexed by objects I of  $\mathbb{C}$ , such that, for every  $g_0 \colon \Gamma(I_0, I_0)$ ,  $g_1 \colon \Gamma(I_1, I_1)$ and  $i_2 \colon \text{Hom}(I_0, I_1)$  such that

$$\Gamma(I_0, i_2) g_0 = \Gamma(i_2, I_1) g_1$$

it is the case that

$$\Delta(I_0, i_2) (\phi_{I_0} g_0) = \Delta(I_1, i_2) (\phi_{I_1} g_1).$$

NotationWrite  $\phi: \Gamma \xrightarrow{\diamond} \Delta$  to mean that  $\phi$  is a paranaturaltransformation from  $\Gamma$  to  $\Lambda$ Jacob NeumannParanatural Category Theory22

### Composition

 $\eta$ 

# ✓ When both the domain & codomain are functors (or both presheaves), paranaturality coincides with usual naturality

# 1 Parametric Polymorphism

#### $\texttt{rev} \colon \mathsf{List} \ \mathbb{N} \to \mathsf{List} \ \mathbb{N}$

#### $\texttt{rev} \colon \texttt{List} \ 2 \to \texttt{List} \ 2$

#### rev: List string $\rightarrow$ List string

### $rev: List(List \mathbb{N}) \rightarrow List(List \mathbb{N})$

#### $\texttt{rev} \colon \forall \alpha. \texttt{List} \ \alpha \to \texttt{List} \ \alpha$

Jacob Neumann

Paranatural Category Theory

# Key Idea: A polymorphic function cannot examine or

### case on $\alpha$

The topic of **parametricity** is the precise statement of what "cannot examine or case on  $\alpha$ " means. This was done by Reynolds, using logical relations.

For the type  $\forall \alpha$ .List  $\alpha \rightarrow$  List  $\alpha$ , this ends up being just naturality

## Problem:

Parametricity=Naturality doesn't extend to difunctors

### sort: $\forall \alpha. (\alpha \times \alpha \to \mathbf{2}) \to \text{List } \alpha \to \text{List } \alpha$

"Free theorem" for this type (Wadler): if  $\prec_X : X \times X \to \mathbf{2}$  and  $\prec_Y : Y \times Y \to \mathbf{2}$  and  $f : X \to Y$  is such that

$$(x \prec_X x') = (f(x) \prec_Y f(x')) \qquad \text{for all } x, x' : X$$

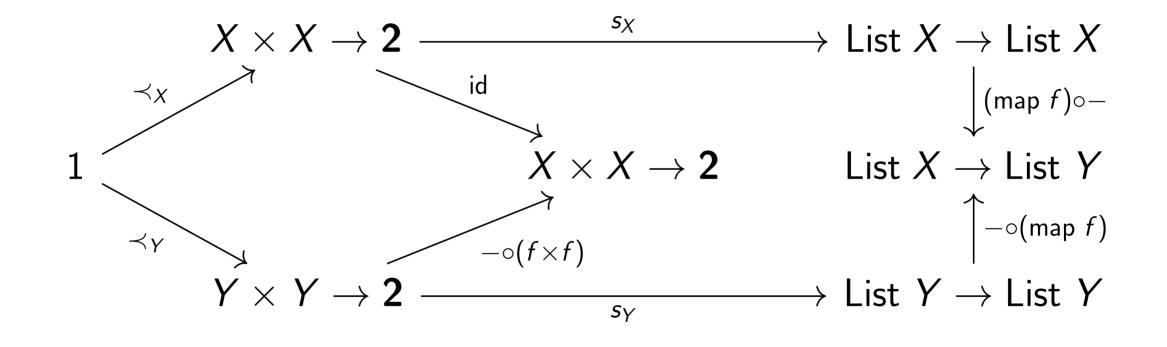
then, for any  $s: \forall \alpha. (\alpha \times \alpha \to 2) \to \text{List } \alpha \to \text{List } \alpha$ 

$$(\operatorname{map} f) \circ (s_X \prec_X) = (s_Y \prec_Y) \circ (\operatorname{map} f).$$

Jacob Neumann

Paranatural Category Theory

### if the diamond commutes, so does the hexagon



General Conjecture: Paranaturality captures the correct intuitions for parametric polymorphism

# 2 Basic Paranatural Category Theory

Prop. For a  $|\mathbb{C}|$ -indexed family of maps  $\phi_I \colon \Gamma(I, I) \to \Delta(I, I)$ , the following are equivalent:

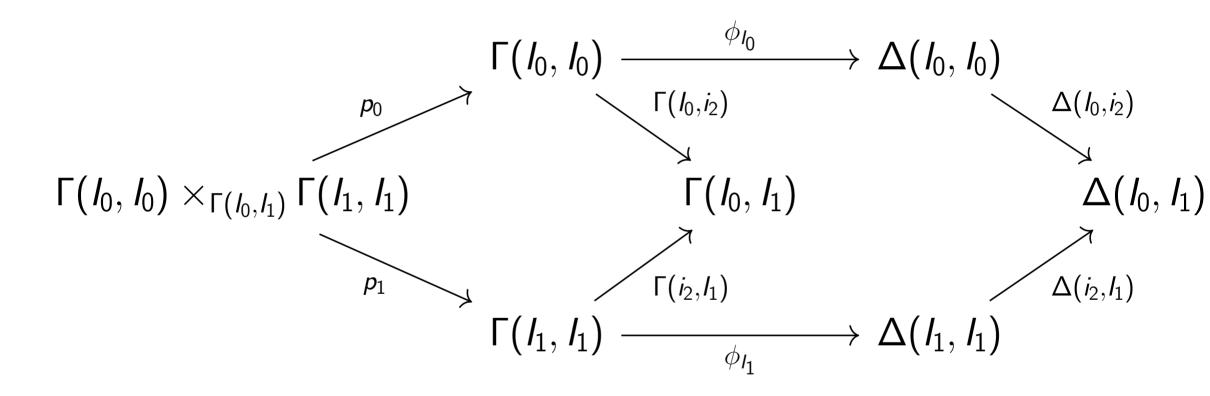
- (1)  $\phi$  is a paranatural transformation (2) For all  $i_{0}$ : Hom $(l_{0}, l_{1})$
- (2) For all  $i_2$ : Hom $(I_0, I_1)$ ,

$$\Delta(I_0, i_2) \circ \phi_{I_0} \circ p_0 = \Delta(i_2, I_1) \circ \phi_{I_1} \circ p_1$$

where  $p_0$ ,  $p_1$  are the projection maps of the pullback of  $\Gamma(I_0, i_2)$  along  $\Gamma(i_2, I_1)$ .

(3) For all  $i_2$ , all sets W, and all  $w_0: W \to \Gamma(I_0, I_0)$  and  $w_1: W \to \Gamma(I_1, I_1)$  such that  $\Gamma(I_0, i_2) \circ w_0 = \Gamma(i_2, I_1) \circ w_1$ ,

$$\Delta(I_0, i_2) \circ \phi_{I_0} \circ w_0 = \Delta(i_2, I_1) \circ \phi_{I_1} \circ w_1$$



Prop. For a  $|\mathbb{C}|$ -indexed family of maps  $\phi_I \colon \Gamma(I, I) \to \Delta(I, I)$ , the following are equivalent:

- (1)  $\phi$  is a paranatural transformation (2) For all  $i_0$ : Hom $(l_0, l_1)$
- (2) For all  $i_2$ : Hom $(I_0, I_1)$ ,

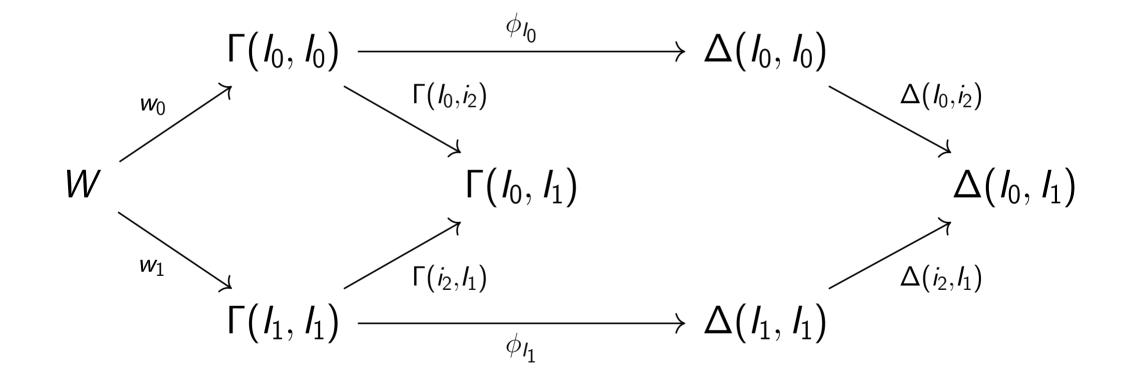
$$\Delta(I_0, i_2) \circ \phi_{I_0} \circ p_0 = \Delta(i_2, I_1) \circ \phi_{I_1} \circ p_1$$

where  $p_0$ ,  $p_1$  are the projection maps of the pullback of  $\Gamma(I_0, i_2)$  along  $\Gamma(i_2, I_1)$ .

(3) For all  $i_2$ , all sets W, and all  $w_0: W \to \Gamma(I_0, I_0)$  and  $w_1: W \to \Gamma(I_1, I_1)$  such that  $\Gamma(I_0, i_2) \circ w_0 = \Gamma(i_2, I_1) \circ w_1$ ,

$$\Delta(I_0, i_2) \circ \phi_{I_0} \circ w_0 = \Delta(i_2, I_1) \circ \phi_{I_1} \circ w_1$$

### if the diamond commutes, so does the hexagon



Prop. For a  $|\mathbb{C}|$ -indexed family of maps  $\phi_I \colon \Gamma(I, I) \to \Delta(I, I)$ , the following are equivalent:

- (1)  $\phi$  is a paranatural transformation (2) For all  $i_0$ : Hom $(l_0, l_1)$
- (2) For all  $i_2$ : Hom $(I_0, I_1)$ ,

$$\Delta(I_0, i_2) \circ \phi_{I_0} \circ p_0 = \Delta(i_2, I_1) \circ \phi_{I_1} \circ p_1$$

where  $p_0$ ,  $p_1$  are the projection maps of the pullback of  $\Gamma(I_0, i_2)$  along  $\Gamma(i_2, I_1)$ .

(3) For all  $i_2$ , all sets W, and all  $w_0 \colon W \to \Gamma(I_0, I_0)$  and  $w_1 \colon W \to \Gamma(I_1, I_1)$  such that  $\Gamma(I_0, i_2) \circ w_0 = \Gamma(i_2, I_1) \circ w_1$ ,

$$\Delta(I_0, i_2) \circ \phi_{I_0} \circ w_0 = \Delta(i_2, I_1) \circ \phi_{I_1} \circ w_1$$

## Structures of a difunctor

Defn. For any  $\Gamma : \mathbb{C}^{op} \times \mathbb{C} \to Set$ , define the category of  $\Gamma$ -structures (or category of diagonal elements of  $\Gamma$ )—denoted  $\Gamma$ -Struct—to be the category

• whose objects are pairs

$$(I,g)$$
:  $\sum_{I:|\mathbb{C}|} \Gamma(I,I)$ 

whose morphisms (I<sub>0</sub>, g<sub>0</sub>) to (I<sub>1</sub>, g<sub>1</sub>) are C-morphisms i<sub>2</sub>: Hom(I<sub>0</sub>, I<sub>1</sub>) such that

$$\Gamma(I_0, i_2) g_0 = \Gamma(i_2, I_1) g_1$$

(call these "Г homomorphisms")

with identities and composition inherited from  $\mathbb{C}$ .

Notice The paranaturality condition (for  $\phi \colon \Gamma \xrightarrow{\diamond} \Delta$ ) can be rephrased as: *if*  $i_2$  is a  $\Gamma$  homomorphism from  $(I_0, g_0)$  to  $(I_1, g_1)$ , then  $i_2$  is a  $\Delta$ homomorphism from  $(I_0, \phi_{I_0} g_0)$  to  $(I_1, \phi_{I_1} g_1)$ .

Notation If  $\phi: \Gamma \xrightarrow{\diamond} \Delta$ , write  $\underline{\phi}$  for the functor  $\Gamma$ -Struct  $\rightarrow \Delta$ -Struct sending (I, g) to  $(I, \phi_I g)$  and sending morphisms  $i_2$  to themselves (which is functorial, by the above comment). Claim The "underlining" operation (taking the corresponding functor) is *itself* functorial:  $\underline{\psi} \circ \phi = \underline{\psi} \circ \phi$ . Notation Write  $\mathring{\mathbb{C}}$  for the category whose objects are difunctors  $\mathbb{C}^{op} \times \mathbb{C} \to Set$  and whose morphisms are paranatural transformations.

Defn. The diYoneda embedding  $yy : \mathbb{C}^{op} \times \mathbb{C} \to \mathring{\mathbb{C}}$  is the functor whose object part is given by

 $\mathbf{yy} (I_0, I_1) (J_0, J_1) :\equiv \mathsf{Hom}(I_0, J_1) \times \mathsf{Hom}(J_0, I_1)$ 

and whose four morphism parts are given by appropriate pre- and post-compositions.

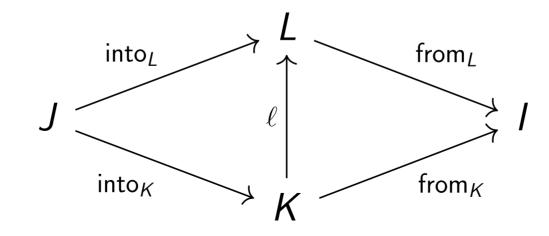
Question: What is yy(J, I)-Struct?

#### Splice Categories

Defn. For objects  $I, J: |\mathbb{C}|$ , define the splice category  $J/\mathbb{C}/I$  between J and I to be the category whose objects are diagrams of the form

$$J \xrightarrow{\mathsf{into}_K} K \xrightarrow{\mathsf{from}_K} I$$

and whose morphisms from  $(K, into_K, from_K)$  to  $(L, into_L, from_L)$  are maps  $\ell$ : Hom(K, L) making both triangles commute:



Jacob Neumann

Lemma For any difunctor  $\Delta : \mathbb{C}^{op} \times \mathbb{C} \to Set$ , there is a bijection  $\Delta(I, J) \cong \mathbf{yy}(J, I) \xrightarrow{\diamond} \Delta$ 

paranatural in I, J.

- Note that I and J are flipped on the right
- A paranatural transformation is an iso iff its corresponding functor is
- To prove this, we construct an α<sub>d</sub>: yy(I, I) → Δ for each
  d: Δ(I, I) and vice-versa.

## diYoneda Reasoning

Claim For any  $\mathbb{C}$ , the category of difunctors  $\mathring{\mathbb{C}}$  has a terminal object (the constant-singleton difunctor) and binary products (given pointwise). **Prop.** For any  $\mathbb{C}$ , the category of difunctors  $\mathring{\mathbb{C}}$  has exponential objects. *Proof.* By "diYoneda reasoning": for difunctors  $\Gamma$ ,  $\Delta$ , *suppose* their exponential  $\Delta^{\Gamma}$  existed. Then

$$\Delta^{\Gamma}(I, J) \cong \mathbf{yy}(J, I) \xrightarrow{\diamond} \Delta^{\Gamma} \qquad \qquad \text{diYoneda Lemma} \\ \cong \mathbf{yy}(J, I) \times \Gamma \xrightarrow{\diamond} \Delta \qquad \qquad \text{(desired property)}$$

so now define  $\Delta^{\Gamma}(I, J)$  to be  $\mathbf{yy}(J, I) \times \Gamma \xrightarrow{\diamond} \Delta$ , and verify this satisfies all the necessary properties.

Jacob Neumann

Conjecture: Ĉ is a (co)complete topos with pointwise colimits

## **3 Difunctor Models of Type Theory**

# dea: Define models of type theory using difunctors

We'll be using CwFs as our notion of a "model of type theory". So we need:

- A category Con of contexts and substitutions (that has a terminal object, the empty context)
- A presheaf Ty:  $Con^{op} \rightarrow Set$  of **types**
- A presheaf Tm:  $(\int Ty)^{op} \rightarrow Set$  of **terms**
- An operation of context extension (for Δ: Con and A: Ty Δ, a specified Δ.A: Con) satisfying the appropriate condition.

So far, we haven't been paying attention to size issues or homotopy level (e.g. whether  $\Gamma \xrightarrow{\diamond} \Delta$  constitutes a set). For this section, we'll be

- Assuming a Grothendieck set universe  $\mathcal{U}$ , whose elements we'll call "small sets".
- Assuming UIP (someone will need to go through and do a higher-homotopy version of this someday)

Let  $\mathbb{C}$  be a small category ( $|\mathbb{C}|$  is in  $\mathcal{U}$ , as are all hom-sets). Then the **difunctor model of type theory** (on  $\mathbb{C}$ ) is defined as follows.

- Con will be the the category Ĉ of difunctors and paranatural transforms on ℂ. The empty context, ♦, is the constant-singleton difunctor.
- A type in context  $\Delta$  will be a small-set-valued difunctor on  $\Delta$ -Struct, i.e. some  $A: (\Delta$ -Struct)<sup>op</sup>  $\times \Delta$ -Struct  $\rightarrow \mathcal{U}$ . Type substitution (the morphism part of Ty) is defined by

$$A[\delta](I,g)(I',g') :\equiv A(I,\delta_I g)(I',\delta_{I'} g')$$

for some  $\delta \colon \Gamma \xrightarrow{\diamond} \Delta$ .

Given A: Ty Δ, a term a: Tm(Δ, A) is a dependent paranatural transformation from Δ to A. That is, a dependent function

$$a_{I}$$
 :  $\prod_{d: \Delta(I,I)} A(I,d)(I,d)$ 

for each I:  $|\mathbb{C}|$ , satisfying a "dependent paranaturality condition": if  $\Delta(I_0, i_2) d_0 = \Delta(i_2, I_1) d_1$ , then

$$A((I_0, d_0), i_2) (a_{I_0} d_0) = A(i_2, (I_1, d_1)) (a_{I_1} d_1).$$

## Difunctor models (cont.)

• Given  $\Delta$ : Con and A: Ty  $\Delta$ , we want  $\Delta .A$  to satisfy  $\Gamma \xrightarrow{\diamond} \Delta .A \cong \sum_{\delta : \Gamma \xrightarrow{\diamond} \Delta} \operatorname{Tm}(\Gamma, A[\delta]).$ 

So use diYoneda reasoning!

$$\Delta.A(I,J) \cong \mathbf{yy}(J,I) \xrightarrow{\diamond} \Delta.A$$
$$\cong \sum_{\delta: \mathbf{yy}(J,I) \xrightarrow{\diamond} \Delta} \operatorname{Tm}(\mathbf{yy}(J,I), A[\delta])$$

Can we simplify more? Open question: dependent diYoneda?

Jacob Neumann

**Paranatural Category Theory** 

## Lifting Grothendieck Universes

Using the difunctor/paranatural analogue of a trick due to Hofmann and Streicher, we can internalize our Grothendieck universe as a "large closed type"  $\mathbf{U} : \mathbb{C}^{op} \times \mathbb{C} \to \text{Set}$  (note that  $\blacklozenge$ -Struct is isomorphic to  $\mathbb{C}$  itself). Again, use diYoneda: we want  $\mathbf{U}$  to satisfy

$$\mathsf{\Gamma}\mathsf{m}(\mathsf{\Gamma},\mathbf{U}) \hspace{.1in}\cong\hspace{.1in} \mathsf{Ty}\;\mathsf{\Gamma}$$

so we have:

$$\begin{split} \mathbf{U}(I,J) &\cong \mathbf{yy}(J,I) \xrightarrow{\diamond} \mathbf{U} \\ &\equiv \mathsf{Tm}(\mathbf{yy}(J,I),\mathbf{U}) \\ &\cong \mathsf{Ty}(\mathbf{yy}(J,I)) \\ &\equiv (\mathbf{yy}(J,I)\text{-}\mathsf{Struct})^{\mathsf{op}} \times \mathbf{yy}(J,I)\text{-}\mathsf{Struct} \to \mathcal{U} \\ &\equiv (J/\mathbb{C}/I)^{\mathsf{op}} \times (J/\mathbb{C}/I) \to \mathcal{U}. \end{split}$$

- Dependent diYoneda Lemma
- Difunctor semantics of HOAS/SOGATs
- Internal parametricity
- Directed type theory connection