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Question of the day: Where

have I seen this before?
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Sources

• Collection of links: jacobneu.github.io/research/paranat

• arXiv preprint: arxiv.org/abs/2307.09289
• HoTTEST talk:
▶ Video: youtube.com/watch?v=X4v5HnnF2-o
▶ Slides: research/slides/HoTTEST-2022.pdf

• Midlands Graduate School talk: research/slides/MGS-2023.pdf

• Lean formalization (in progress) will be made public soon!
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0 Category-Theoretic Church

Numerals



Encoding N

n :≡ λf .f n
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What kind of thing is n?



n : Hom(I , I ) → Hom(I , I )(n)I : Hom(I , I ) → Hom(I , I )n :
∏
I : |C|

Hom(I , I ) → Hom(I , I )

Goal Articulate a condition on this data, such that

• “Soundness”: every n satisfies it

• “Completeness”: you can prove the η law for N from it
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Is n a endo-natural transform of Hom?

Hom : Cop × C → Set, “Hom is a difunctor on C”

So a natural transformation Hom → Hom would have components
indexed by Cop × C.
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Same problem with extranaturality
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We need a diagonal notion

of transformation



Dinatural Transformations

For Γ,∆ : Cop×C → Set, a dinatural transformation from Γ to ∆ is
a family of maps

ϕI : Γ(I , I ) → ∆(I , I )

indexed by objects I of C, such that, for every i2 : Hom(I0, I1), the
following hexagon commutes.

Γ(I0, I0) ∆(I0, I0)

Γ(I1, I0) ∆(I0, I1)

Γ(I1, I1) ∆(I1, I1)

ϕI0

∆(I0,i2)Γ(i2,I0)

Γ(I1,i2)

ϕI1

∆(i2,I1)
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Endo-dinatural Transformations of Hom

Hom(I0, I0) Hom(I0, I0)

Hom(I1, I0) Hom(I0, I1)

Hom(I1, I1) Hom(I1, I1)

λi .in

i2◦−−◦i2

i2◦−

λi .in

−◦i2

for all i2 : Hom(I0, I1) and all i ′2 : Hom(I1, I0),

i2 ◦ (i ′2 ◦ i2)n = (i2 ◦ i ′2)n ◦ i2
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Problems with dinaturality

• Dinaturality condition doesn’t seem to be saying anything
worthwhile
▶ No hope of proving η

• Dinaturals don’t compose
▶ m · n = m ◦ n
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Dinaturals don’t compose

Γ(I0, I0) ∆(I0, I0) Θ(I0, I0)

Γ(I1, I0) ∆(I1, I0) ∆(I0, I1) Θ(I0, I1)

Γ(I1, I1) ∆(I1, I1) Θ(I1, I1)

ϕI0 ψI0

∆(I0,i2) Θ(I0,i2)Γ(i2,I0)

Γ(I1,i2)

∆(i2,I0)

∆(I1,i2)

ϕI1 ψI1

∆(i2,I1) Θ(i2,I1)
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Paranatural transformations

For Γ,∆ : Cop × C → Set, a paranatural transformation (known as
a strong dinatural transformation in the literature) from Γ to ∆ is a
family of maps

ϕI : Γ(I , I ) → ∆(I , I )

indexed by objects I of C, such that, for every g0 : Γ(I0, I0), g1 : Γ(I1, I1)
and i2 : Hom(I0, I1) such that

Γ(I0, i2) g0 = Γ(i2, I1) g1
it is the case that

∆(I0, i2) (ϕI0 g0) = ∆(I1, i2) (ϕI1 g1).

Notation Write ϕ : Γ
⋄−→ ∆ to mean that ϕ is a paranatural

transformation from Γ to ∆.
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if the diamond commutes, so does the hexagon

Γ(I0, I0) ∆(I0, I0)

1 Γ(I0, I1) ∆(I0, I1)

Γ(I1, I1) ∆(I1, I1)

ϕI0

Γ(I0,i2) ∆(I0,i2)g0

g1

ϕI1

Γ(i2,I1) ∆(i2,I1)
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Paranaturals are nice

✓ Composition

✓ η

✓ When both the domain & codomain are functors (or both
presheaves), paranaturality coincides with usual naturality
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1 Parametric Polymorphism



rev : List N → List N

rev : List 2 → List 2

rev : List string → List string

rev : List(List N) → List(List N)

...

rev : ∀α.List α → List α
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Key Idea: A polymorphic

function cannot examine or

case on α



Parametricity

The topic of parametricity is the precise statement of what “cannot
examine or case on α” means. This was done by Reynolds, using logical
relations.

For the type ∀α.List α → List α, this ends up being just naturality

List X List X

List Y List Y

rev

map f map f

rev
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Problem:

Parametricity=Naturality

doesn’t extend to difunctors



sort : ∀α.(α× α → 2) → List α → List α

“Free theorem” for this type (Wadler):

if ≺X : X × X → 2 and ≺Y : Y × Y → 2 and f : X → Y is such that

(x ≺X x ′) = (f (x) ≺Y f (x ′)) for all x , x ′ : X

then, for any s : ∀α.(α× α → 2) → List α → List α

(map f ) ◦ (sX ≺X ) = (sY ≺Y ) ◦ (map f ).
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if the diamond commutes, so does the hexagon

X × X → 2 List X → List X

1 X × X → 2 List X → List Y

Y × Y → 2 List Y → List Y

sX

id
(map f )◦−≺X

≺Y

sY

−◦(f×f )
−◦(map f )

Jacob Neumann Paranatural Category Theory 22 September 2023 24



General Conjecture:

Paranaturality captures the

correct intuitions for

parametric polymorphism



2 Basic Paranatural

Category Theory



Characterizations of Paranaturality

Prop. For a |C|-indexed family of maps ϕI : Γ(I , I ) → ∆(I , I ), the
following are equivalent:

(1) ϕ is a paranatural transformation

(2) For all i2 : Hom(I0, I1),

∆(I0, i2) ◦ ϕI0 ◦ p0 = ∆(i2, I1) ◦ ϕI1 ◦ p1
where p0, p1 are the projection maps of the pullback of Γ(I0, i2)
along Γ(i2, I1).

(3) For all i2, all sets W , and all w0 : W → Γ(I0, I0) and
w1 : W → Γ(I1, I1) such that Γ(I0, i2) ◦ w0 = Γ(i2, I1) ◦ w1,

∆(I0, i2) ◦ ϕI0 ◦ w0 = ∆(i2, I1) ◦ ϕI1 ◦ w1
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Γ(I0, I0) ∆(I0, I0)

Γ(I0, I0)×Γ(I0,I1) Γ(I1, I1) Γ(I0, I1) ∆(I0, I1)

Γ(I1, I1) ∆(I1, I1)

ϕI0

Γ(I0,i2) ∆(I0,i2)p0

p1

ϕI1

Γ(i2,I1) ∆(i2,I1)

Jacob Neumann Paranatural Category Theory 22 September 2023 27



Characterizations of Paranaturality

Prop. For a |C|-indexed family of maps ϕI : Γ(I , I ) → ∆(I , I ), the
following are equivalent:

(1) ϕ is a paranatural transformation

(2) For all i2 : Hom(I0, I1),

∆(I0, i2) ◦ ϕI0 ◦ p0 = ∆(i2, I1) ◦ ϕI1 ◦ p1
where p0, p1 are the projection maps of the pullback of Γ(I0, i2)
along Γ(i2, I1).

(3) For all i2, all sets W , and all w0 : W → Γ(I0, I0) and
w1 : W → Γ(I1, I1) such that Γ(I0, i2) ◦ w0 = Γ(i2, I1) ◦ w1,

∆(I0, i2) ◦ ϕI0 ◦ w0 = ∆(i2, I1) ◦ ϕI1 ◦ w1

Jacob Neumann Paranatural Category Theory 22 September 2023 28



if the diamond commutes, so does the hexagon

Γ(I0, I0) ∆(I0, I0)

W Γ(I0, I1) ∆(I0, I1)

Γ(I1, I1) ∆(I1, I1)

ϕI0

Γ(I0,i2) ∆(I0,i2)w0

w1

ϕI1

Γ(i2,I1) ∆(i2,I1)
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Structures of a difunctor

Defn. For any Γ : Cop × C → Set, define the category of
Γ-structures (or category of diagonal elements of Γ)—denoted
Γ-Struct—to be the category

• whose objects are pairs

(I , g) :
∑
I :|C|

Γ(I , I )

• whose morphisms (I0, g0) to (I1, g1) are C-morphisms i2 : Hom(I0, I1)
such that

Γ(I0, i2) g0 = Γ(i2, I1) g1
(call these “Γ homomorphisms”)

with identities and composition inherited from C.
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Observations about structs and paranaturality

Notice The paranaturality condition (for ϕ : Γ
⋄−→ ∆) can be rephrased

as: if i2 is a Γ homomorphism from (I0, g0) to (I1, g1), then i2 is a ∆
homomorphism from (I0, ϕI0 g0) to (I1, ϕI1 g1).

Notation If ϕ : Γ
⋄−→ ∆, write ϕ for the functor Γ-Struct → ∆-Struct

sending (I , g) to (I , ϕI g) and sending morphisms i2 to themselves
(which is functorial, by the above comment).
Claim The “underlining” operation (taking the corresponding functor)
is itself functorial: ψ ◦ ϕ = ψ ◦ ϕ.
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Notation Write
⋄
C for the category whose objects are difunctors

Cop × C → Set and whose morphisms are paranatural transformations.

Defn. The diYoneda embedding yy : Cop × C → ⋄
C is the functor

whose object part is given by

yy (I0, I1) (J0, J1) :≡ Hom(I0, J1)× Hom(J0, I1)

and whose four morphism parts are given by appropriate pre- and
post-compositions.
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Question: What is

yy(J , I )-Struct?



Splice Categories

Defn. For objects I , J : |C|, define the splice category J/C/I between
J and I to be the category whose objects are diagrams of the form

J K I
intoK fromK

and whose morphisms from (K , intoK , fromK) to (L, intoL, fromL) are
maps ℓ : Hom(K , L) making both triangles commute:

L

J I

K

fromLintoL

intoK fromK

ℓ
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diYoneda Lemma

Lemma For any difunctor ∆: Cop × C → Set, there is a bijection

∆(I , J) ∼= yy(J , I )
⋄−→ ∆

paranatural in I , J .

• Note that I and J are flipped on the right

• A paranatural transformation is an iso iff its corresponding functor is

• To prove this, we construct an αd : yy(I , I )
⋄−→ ∆ for each

d : ∆(I , I ) and vice-versa.
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diYoneda Reasoning

Claim For any C, the category of difunctors ⋄
C has a terminal object

(the constant-singleton difunctor) and binary products (given pointwise).
Prop. For any C, the category of difunctors ⋄

C has exponential objects.
Proof. By “diYoneda reasoning”: for difunctors Γ,∆, suppose their
exponential ∆Γ existed. Then

∆Γ(I , J) ∼= yy(J , I )
⋄−→ ∆Γ diYoneda Lemma

∼= yy(J , I )× Γ
⋄−→ ∆ (desired property)

so now define ∆Γ(I , J) to be yy(J , I )× Γ
⋄−→ ∆, and verify this satisfies

all the necessary properties.
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Conjecture:
⋄C is a

(co)complete topos with

pointwise colimits



3 Difunctor Models of Type

Theory



Idea: Define models of type

theory using difunctors



Categories with Families

We’ll be using CwFs as our notion of a “model of type theory”. So we
need:

• A category Con of contexts and substitutions (that has a
terminal object, the empty context)

• A presheaf Ty : Conop → Set of types

• A presheaf Tm: (∫ Ty)op → Set of terms

• An operation of context extension (for ∆: Con and A : Ty ∆, a
specified ∆.A : Con) satisfying the appropriate condition.
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Note about size and identity

So far, we haven’t been paying attention to size issues or homotopy level
(e.g. whether Γ

⋄−→ ∆ constitutes a set). For this section, we’ll be

• Assuming a Grothendieck set universe U , whose elements we’ll call
“small sets”.

• Assuming UIP (someone will need to go through and do a
higher-homotopy version of this someday)
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Difunctor models

Let C be a small category (|C| is in U , as are all hom-sets). Then the
difunctor model of type theory (on C) is defined as follows.

• Con will be the the category
⋄
C of difunctors and paranatural

transforms on C. The empty context, ♦, is the constant-singleton
difunctor.

• A type in context ∆ will be a small-set-valued difunctor on
∆-Struct, i.e. some A : (∆-Struct)op ×∆-Struct → U . Type
substitution (the morphism part of Ty) is defined by

A[δ] (I , g) (I ′, g ′) :≡ A (I , δI g) (I
′, δI ′ g

′)

for some δ : Γ
⋄−→ ∆.
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Difunctor models (cont.)

• Given A : Ty ∆, a term a : Tm(∆,A) is a dependent paranatural
transformation from ∆ to A. That is, a dependent function

aI :
∏

d : ∆(I ,I )

A (I , d) (I , d)

for each I : |C|, satisfying a “dependent paranaturality condition”:
if ∆(I0, i2) d0 = ∆(i2, I1) d1, then

A((I0, d0), i2) (aI0 d0) = A(i2, (I1, d1)) (aI1 d1).
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Difunctor models (cont.)

• Given ∆: Con and A : Ty ∆, we want ∆.A to satisfy

Γ
⋄−→ ∆.A ∼=

∑
δ : Γ

⋄−→∆

Tm(Γ,A[δ]).

So use diYoneda reasoning!

∆.A(I , J) ∼= yy(J , I )
⋄−→ ∆.A

∼=
∑

δ : yy(J ,I )
⋄−→∆

Tm(yy(J , I ),A[δ])

Can we simplify more? Open question: dependent diYoneda?
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Lifting Grothendieck Universes

Using the difunctor/paranatural analogue of a trick due to Hofmann and
Streicher, we can internalize our Grothendieck universe as a “large closed
type” U : Cop × C → Set (note that ♦-Struct is isomorphic to C itself).
Again, use diYoneda: we want U to satisfy

Tm(Γ,U) ∼= Ty Γ

so we have:

U(I , J) ∼= yy(J , I )
⋄−→ U

≡ Tm(yy(J , I ),U)
∼= Ty(yy(J , I ))

≡ (yy(J , I )-Struct)op × yy(J , I )-Struct → U
≡ (J/C/I )op × (J/C/I ) → U .
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Future directions

• Dependent diYoneda Lemma

• Difunctor semantics of HOAS/SOGATs

• Internal parametricity

• Directed type theory connection
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