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0 Relations and
Correspondences



Rel forms a weak 2-category:

• Objects are sets X ,Y ,Z : Set

• Rel(X ,Y ) ≡ X → Y → Prop

• For R : Rel(X ,Y ) and S : Rel(Y ,Z ), (S � R) : Rel(X ,Z ) is given
by:

(S � R) x z ≡

∥∥∥∥∥∥
∑
y :Y

(R x y)× (S y z)

∥∥∥∥∥∥
• For R ,R ′ : Rel(X ,Y ),

Rel(R ,R ′) ≡
∏
x :X

∏
y :Y

(R x y)→ (R ′ x y)
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Poset Enrichment

Rel(R ,R ′) ≡
∏
x :X

∏
y :Y

(R x y)→ (R ′ x y)

Note this is a proposition, which we’ll write as R ≤ R ′.

(λx .λy .λp.p) : R ≤ R

(λx .λy .(θ x y) ◦ (η x y)) : R ≤ R ′′ (η : R ≤ R ′, θ : R ′ ≤ R ′′)

This partial order is compatible with composition:

S ≤ S ′ → (S � R) ≤ (S ′ � R)

R ≤ R ′ → (S � R) ≤ (S � R ′)
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Structure on the posets

Classical allegory theory focuses on binary meets on these posets:

R ∧ R ′ ≡ λx .λy .(R x y)× (R ′ x y)

But for Rel, we can do meets (and joins) indexed over arbitrary sets:∧
i :I

Ri ≡ λx .λy .
∏
i :I

Ri x y

∨
i :I

Ri ≡ λx .λy .

∥∥∥∥∥∑
i :I

Ri x y

∥∥∥∥∥
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Turning things around

(−)† : Rel(X ,Y )→ Rel(Y ,X )

R† y x ≡ R x y

This is definitionally an involution:(
R†
)†

x y ≡ R† y x ≡ R x y

and respects the poset structure:

R1 ≤ R2 ↔ R†1 ≤ R†2 .
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Allegories are the abstract definition of this
structure: a category enriched over posets with
binary meets that is equipped with a involution

operator, and satisfies certain laws.

5 Relations and Correspondences



Rel(X ,Y ) ≡ X → Y → Prop

Corr(X ,Y ) ≡ X → Y → Set
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Corr forms a weak 2-category:

• Objects are sets X ,Y ,Z : Set

• Corr(X ,Y ) ≡ X → Y → Prop

• For R : Corr(X ,Y ) and S : Corr(Y ,Z ), (S ◦ R) : Corr(X ,Z ) is
given by

(S ◦ R) x z ≡
∑
y :Y

(R x y)× (S y z)

•
idX x x ′ ≡ (x = x ′)
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• For R ,R ′ : Corr(X ,Y ),

Corr(R ,R ′) ≡ (R ⇒ R ′) ≡

∏
x :X

∏
y :Y

(R x y)→ (R ′ x y)

•
idR ≡ λx .λy .λp.p
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W X Y ZR S T

αT ,S ,R : (T ◦ S) ◦ R =⇒ T ◦ (S ◦ R)

αT ,S ,R :
∏
w :W

∏
z :Z

(((T ◦ S) ◦ R) w z)→ ((T ◦ (S ◦ R)) w z)

αT ,S ,R ≡ λw .λz .λ(x , (pwx, (y , (pxy , pyz)))).(y , ((x , (pwx, pxy)), pyz))
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Whiskering

Given R ,R ′ : Corr(X ,Y ), η : R ⇒ R ′,
S , S ′ : Corr(Y ,Z ) and ψ : S ⇒ S ′,

ψ / R ≡ (λx .λz .λ(y , (pxRy , pySz)).(y , (pxRy , ψ y z pySz)))

:
∏
x :X

∏
z :Z

((S ◦ R) x z)→ ((S ′ ◦ R) x z)

: (S ◦ R)⇒ (S ′ ◦ R)

S . η ≡ (λx .λz .λ(y , (pxRy , pySz)).(y , (η x y pxRy , pySz)))

:
∏
x :X

∏
z :Z

((S ◦ R) x z)→ ((S ◦ R ′) x z)

: (S ◦ R)⇒ (S ◦ R ′)
10 Relations and Correspondences



((T ◦ S) ◦ R) ◦ Q

(T ◦ (S ◦ R)) ◦ Q (T ◦ S) ◦ (R ◦ Q)

T ◦ ((S ◦ R) ◦ Q) T ◦ (S ◦ (R ◦ Q))

αT ,S ,R / Q αT◦S ,R,Q

αT ,S◦R,Q αT ,S ,R◦Q

T . αS ,R,Q

11 Relations and Correspondences



Given any v : V , z : Z and any

(w , (pvw , (x , (pwx, (y , (pxy , pyz)))))) : (((T ◦ S) ◦ R) ◦ Q) v z

,

αT ,S ,R◦Q(αT◦S ,R ,Q(w , (pvw , (x , (pwx, (y , (pxy , pyz)))))))

≡ αT ,S ,R◦Q(x , ((w , (pvw , pwx)), (y , (pxy , pyz))))

≡ (y , ((x , ((w , (pvw , pwx)), pxy)), pyz))

≡ (T . αS ,R ,Q)(y , ((w , (pvw , (x , (pwx, pxy)))), pyz))

≡ (T . αS ,R ,Q)(αT ,S◦R ,Q(w , (pvw , (y , ((x , (pwx, pxy)), pyz)))))

≡ (T . αS ,R ,Q)(αT ,S◦R ,Q((αT ,S ,R / Q)(w , (pvw , (x , (pwx, (y , (pxy , pyz))))))))

12 Relations and Correspondences



1 Maps and Equivalences



Maps in allegory theory

In classical, set-theoretic mathematics, functions are defined as binary
relations which are single-valued and total.

We can mimic this: given R : Rel(X ,Y ) and x : X , define

imR(x) ≡
∑
y :Y

R x y

then a map is a relation with contractible images:

is map(R) ≡
∏
x :X

is contr(imR(x))

13 Maps and Equivalences
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If X and Y are sets,

(X → Y ) '
∑

R :Rel(X ,Y )

is map(R)

14 Maps and Equivalences
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Can we make something like
this work for

correspondences?



Simplicity and Entirety

Consider the following for R : Rel(X ,Y )

is simple(R) ≡
∏
x :X

is prop(imR(x))

is entire(R) ≡
∏
x :X

‖imR(x)‖

Claim

is simple(R) ↔ (R � R† ≤ idY )

is entire(R) ↔ (idX ≤ R† � R)

15 Maps and Equivalences
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Idea: Corr(R ◦ R†, idY ) and
Corr(idX ,R

† ◦ R) give us
data about the simplicity

and entirety of R



Claim∥∥Corr(R ◦ R†, idY )
∥∥×∥∥Corr(idX ,R

† ◦ R)
∥∥ '∏

x :X

is contr

∑
y :Y

‖R x y‖



16 Maps and Equivalences



Correspondence Adjunctions

Defn. Correspondences F : Corr(X ,Y ) and G : Corr(Y ,X ) are said
to constitute an adjunction if there are

ε : Corr(F ◦ G , idY ) and η : Corr(idX ,G ◦ F )

such that

idF = (ε / F ) ◦ (F . η)

idG = (G . η) ◦ (ε / G )

Write F a G for the type of witnesses to this adjunction.
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Claim For R : Corr(X ,Y ), the following are equivalent:

1

∏
x :X is contr

(∑
y :Y ‖R x y‖

)
2

∥∥Corr(R ◦ R†, idY )
∥∥× ∥∥Corr(idX ,R

† ◦ R)
∥∥

3

∥∥R a R†
∥∥

Conjecture We can drop some of the ‖−‖’s.
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∥∥Corr(R ◦ R†, idY )
∥∥× ∥∥Corr(idX ,R

† ◦ R)
∥∥

3

∥∥R a R†
∥∥

Conjecture We can drop some of the ‖−‖’s.
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Idea: Dualize all this with †



Defn. For R : Rel(X ,Y ) and y : Y , define

fibR(y) ≡
∑
x :X

R x y

then
is comap(R) ≡

∏
y :Y

is contr(fibR(y))
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Cosimplicity and Coentirety

is cosimple(R) ≡
∏
y :Y

is prop(fibR(y))

is coentire(R) ≡
∏
y :Y

‖fibR(y)‖

Claim

is cosimple(R) ↔ (idY ≤ R � R†)
is coentire(R) ↔ (R† � R ≤ idX )
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Conjecture For sets X ,Y ,

(X ' Y )

'
∑

R :Rel(X ,Y )

is map(R)× is comap(R)

Conjecture For R : Corr(X ,Y ), the following are equivalent
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∏
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∥∥× ∥∥Corr(R† ◦ R , idX )
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3

∥∥R† a R
∥∥
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3 Connections & Future
Directions



• Connect with higher observational type theory?

• Drop assumption that X and Y are sets, develop notion of
n-correspondences

• Use correspondences to facilitate reasoning about heterogeneous
notions of equality
I Sorted tree example?

• Explore situations where it would be easier to work with relations
and prove they’re maps afterwards, rather than work with
functions

• Semantics: power allegories and toposes

• Metric spaces & probability? (X → Y → R)
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