
Deeply-Polarized Type Theory as a Generalized1

Algebraic Theory2

Jacob Neumann #3

University of Nottingham, United Kingdom4

Abstract5

One of the long-recognized benefits of categories with families (CwFs) as a model theory for dependent6

type theory is their presentation as a generalized algebraic theory. Recent developments in the7

semantics of type theory make use of second-order generalized algebraic theories (SOGATs), which8

allow for specification of type theories in a higher-order abstract syntax that makes variable binding9

and stability under substitution implicit. Moreover, by interpreting such SOGATs in presheaf10

categories, these second-order theories can readily be translated back to first-order theories.11

We highlight the phenomenon of deep polarization, which arises in the semantics of directed type12

theory. Directed type theories—variants of Martin-Löf type theory designed for synthetic reasoning13

about (higher) categories—often adopt a ‘polarized’ typing discipline of positive and negative types14

in order to axiomatize co- and contra-variance. Deep polarization—the extension of this polarity15

into the variable binding and substitution of the language—is difficult to express in a higher-order16

abstract syntax that has made these implicit. We show how to resolve this problem, and give a17

SOGAT presentation of deeply-polarized type theory.18

2012 ACM Subject Classification Theory of computation → Type theory19

Keywords and phrases semantics, directed type theory, homotopy type theory, category theory,20

generalized algebraic theory21

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2322

1 Introduction23

Categories with families (CwFs)—a notion of ‘model’ for Martin-Löf type theory [23, 24]24

introduced by Dybjer [13]—enjoy some considerable advantages. First, they are generalized25

algebraic theories (GATs) in the sense of Cartmell [11]. This means that all the data26

constituting a CwF can be laid out explicitly as first-order operations constrained by27

various equations, making CwFs particularly amenable to computer formalization. Moreover,28

CwFs enjoy the advantage of being expressed in terms of very standard category-theoretic29

constructions (such as presheaves and categories of elements), so specialist knowledge in topos30

theory or higher category theory is not necessary to comprehend constructions involving31

CwFs. Finally, as we discuss later, CwFs are highly-modular, in that they provide a flexible32

framework for making metatheoretic arguments about type theories equipped with a variety33

of different constructs (see [12] for a wider survey of the possibilities for modelling type34

theory with CwFs).35

In the present work, we begin to develop a confluence between two active areas of research36

in the semantics of dependent type theory. First, we extend the notion of CwF to encompass37

constructions important to directed type theory. The goal of directed type theory is to develop38

a type theory that can serve as a language for synthetic (higher) category theory, analogous39

to how homotopy type theory [32] serves as a synthetic language for higher groupoids [33].40

Several approaches to directed type theory (particularly [22, 6]) build such a language atop41

a polarized type theory, that is, a type theory with modalities axiomatizing the phenomena42

of co- and contra-variance.43

Second, we incorporate cutting-edge research into the semantics of type theory, namely44

the theory of second-order generalized algebraic theories, or SOGATs [30]. SOGATs serve45

© Jacob Neumann;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jacob.neumann@nottingham.ac.uk
https://orcid.org/0009-0003-5858-466X
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Deeply-Polarized Type Theory as a Generalized Algebraic Theory

as a more convenient language for articulating type theories, because they constitute a46

higher-order abstract syntax (HOAS) [27], where much of the cumbersome bureaucracy47

of expressing elaborate type theories in terms of CwFs can be made implicit. We can48

reason metatheoretically about this syntax, thanks to semantics (also due to Hofmann [18])49

which interpret HOAS in presheaf categories. Moreover, such second-order generalized50

algebraic theories can be systematically translated into first-order generalized algebraic51

theories—particularly CwFs with additional structure—which capture the same constructs.52

1.1 Contribution and Organization53

We explore how SOGATs and the presheaf semantics of HOAS can be leveraged to study54

polarized type theory, anticipating similar studies of both directed type theory and the modal55

type theory of [15].56

In Section 2, we articulate the phenomenon of deep polarization, a modality on the contexts,57

substitutions, and types of several standard models of type theory. In this section, we give the58

first of several semantic presentations of deeply-polarized type theory, (concretely-)polarized59

CwFs.60

In Section 3, we rehearse the dependently-typed analogue of Hofmann’s presheaf semantics61

of higher-order abstract syntax, and the process by which the theories written in such syntax—62

second-order generalized algebraic theories—are elaborated to obtain first-order generalized63

algebraic theories like Π-CwFs. To our knowledge, this material has not been given a single,64

detailed, elementary exposition of this kind.65

Finally, in Section 4, we modify our notion of polarized CwF to be amenable to expression66

in a higher-order abstract syntax, arriving at the notion of abstractly-polarized CwFs. We67

then give a second-order GAT articulating deep polarization, which, when unfolded via68

the procedure from Section 3, yields the theory of abstractly-polarized CwFs. This raises69

several interesting questions, which hopefully will help inform the development of a SOGAT70

presentation of multi-modal type theory.71

1.2 Related Work72

Our analysis in Section 2 assumes familiarity with several standard models of dependent type73

theory, such as the set model (introduced as a first example of CwFs in [13]); the groupoid74

model [19]; and the setoid model [16, 3, 4, 10]. Two formalizations of the setoid model—the75

Agda formalization of [4], and the Coq formalization of [10]—provided important insights76

behind our notion of “abstractly-polarized CwF”, as did contemplation of polarization in the77

theory of Awodey’s natural models [7].78

The first study of what we call “deep polarization” was in the directed type theory of79

Harper and Licata [22], and continued (with some modification) by Nuyts [26]. Subsequent80

directed type theories only incorporate what we call “shallow polarization” (e.g. North [25]),81

or did not adopt a modal typing discipline for co- and contra-variance at all (e.g. Riehl–82

Shulman [28] and Licata–Weaver [2]). The category model of directed type theory as a83

deeply-polarized type theory comes from the work of Altenkirch–Sestini [29], elaborated84

further by the present author and Altenkirch in [6]. Neither develop a general-purpose85

polarized model theory of which the category model is an instance—we do so here.86

The theory of SOGATs stems from the work of Uemura [31, 30], and is further developed87

in [9] and [8]; our presentation of local representability draws significantly on the latter. The88

idea of interpreting higher-order abstract syntax in presheaf models was introduced in [18]89

for the simply-typed case. Doing the same for dependent type theories makes essential use of90

J. Neumann 23:3

the presheaf CwFs of [17, Sect. 4], as well as the construction of universes in presheaf models91

sketched in [20]. A general statement of the process for obtaining a first-order theory from a92

second-order theory is still forthcoming, but [5] applies this technique towards the study of93

internal parametricity.94

1.3 Metatheory and Notation95

We adopt an informal type theory as our metatheory. For instance, we use the type-theoretic96

notation x : X to indicate that x is an element of some set X. We generally assume the97

uniqueness of identity proofs (particularly in Section 3), but this assumption maybe ought to98

be dropped for studying the univalent structures of Section 2. We use Agda-style notation99

for dependent products, writing (x : A) → B(a) instead of
∏

x : A B(a). We will also adopt100

the convention that propositions are subsingleton types, types with at most one element.101

For instance, a relation R on some set X will be understood as a function taking x, x′ : X102

and returning the subsingleton type R(x, x′), whose element (if there is one) we think of as103

a “witness” that x is R-related to x′. This has the advantage of making it trivial to think104

of preorders as instances of categories (i.e. a preorder is just a category with subsingleton105

hom-sets), and likewise setoids as instances of groupoids.106

We make significant use of category-theory concepts. We’ll denote the collection of107

objects of a category C as |C| and the set of morphisms between I and J as C [I, J]. We108

make use of standard categories, such as Set, Preord, and Cat (ignoring its 2-categorical109

aspects). We’ll write ∫ F for the category of elements of some presheaf F . The notion of a110

dependent natural transformation will be important for us: given a presheaf F : Cop → Set111

and G : (∫ F)op → Set, we’ll write112 ∫
I : C

(ϕ : F (I)) → G(I, ϕ)113

for the set of transformations α, whose I-component is a dependent function αI : (ϕ : F (I)) →114

G(I, ϕ) satisfying a dependent version of naturality: for all i : C [J, I] and ϕ : F (I), it is the115

case that G i (αIϕ) = αJ (F i ϕ). If G doesn’t actually depend on ϕ, i.e. G : Cop → Set, then116

this is just the usual set of natural transformations F → G.117

2 The Γ-Cube and PCwFs118

We begin with the following observation: the set model, the setoid model, and the groupoid119

model are all instances of a common pattern. Namely, if we let “structure” refer generically120

to either sets, setoids, or groupoids, then the “structure model” is given by:121

contexts ∆, Γ are structures;122

a substitution σ : Sub ∆ Γ is a structure morphism from ∆ to Γ;123

a type A : Ty Γ is a Γ-indexed family of structures;124

the context extension Γ ▷ A is the total structure of the Grothendieck construction; and125

a term t : Tm(Γ, A) is a section of the projection structure morphism pA : Sub (Γ ▷ A) Γ.126

These follow a common pattern because we can view setoids as a generalization of sets (by127

dropping the assumption of anti-symmetry), and groupoids as a generalization of setoids128

(a setoid is just a groupoid with subsingleton hom-sets). So we have the following chain of129

generalizations:130

Set Setoid Grpd.131

CVIT 2016

23:4 Deeply-Polarized Type Theory as a Generalized Algebraic Theory

We can take this further: as [6] notes, if we’re just considering the basic CwF structure (i.e.132

not further type-formers like Π or identity types), then there’s no need for the ‘invertability’133

assumption of groupoids—we can generalize this to categories,134

Set Setoid Grpd Cat.135

The category model is just the above schema, with “structure” replaced by “category”,136

“structure morphism” by “functor”, etc. This appears to be as far as we can generalize: it’s137

not clear how to make sense of essential elements—particularly indexed families of structures138

and the total structure of the Grothendieck construction—for notions of “structure” more139

general than categories.140

However, observe that these three steps of generalization—dropping anti-symmetry,141

asserting proof relevance,1 and dropping symmetry—are completely orthogonal. Thus, we142

get the following cube, whose corners are all categories of structures which can serve as the143

contexts in a model of type theory. We therefore dub it “the Γ cube”.144

Pos U-Cat

Set U-Grpd

Preord Cat

Setoid Grpd

145

Here, U-Cat refers to univalent categories2—categories for whom the notion of equality146

between objects coincides with isomorphism (this principle—a truncated form of Voevodsky’s147

univalence axiom—is the proof-relevant analogue of anti-symmetry); U-Grpd are such categor-148

ies whose morphisms are also invertible.3 We’re not aware of any systematic study of these149

two models of type theory, but we include the structures here for the sake of completeness.150

Setting the semantics of type theory aside for a moment, there is much to be said about151

the inter-relationships of these eight categories and their arrangement in this diagram. The152

left face and the right face correspond approximately) to the 0- and 1-truncation levels of153

homotopy type theory [21] a setoid (X, ∼), for instance, can have nontrivial “0-dimensional154

structure” in that X may have multiple elements, but has trivial “1-dimensional structure”155

because x ∼ x′ cannot have multiple witnesses. A groupoid can have both nontrivial 0-156

dimensional structure (its objects), and nontrivial 1-dimensional structure (its hom-sets).157

Likewise for the other three left-right pairs. Moreover, there is a reflective subcategory158

relationship between subsequent truncation levels: categories can be reflected to preorders159

(and groupoids into setoids, etc.) by truncating their hom-sets to subsingletons; this operation160

1 We can think of a groupoid as a proof-relevant setoid: in a setoid, the equivalence relation ∼ takes two
elements of the setoid and returns a proposition, the proposition that those two elements are ∼-related.
Groupoids are the same, except replace ‘proposition’ with ‘set’, i.e. there is a set of witnesses that the
two objects are “related”, and this set can potentially have multiple inhabitants.

2 Defined as “saturated categories” in [1], and referred to merely as “categories” throughout that work
and in [32, Chap. 9]

3 Alternatively, “univalent groupoid” can be taken to mean the 1-truncated types of homotopy type
theory [32], which, as noted, can be understood as synthetic groupoids. Developing a similar theory of
univalent synthetic categories is a central motivation for directed (homotopy) type theory.

J. Neumann 23:5

is left adjoint to the inclusion Preord ↪→ Cat.4 Finally, let us note that we could extend the161

cube further to the right, adding a face for 2-categories and 2-groupoids, 3-categories and162

3-groupoids, and so on; this, however, would take us too far afield for the present purpose.163

The up–down dimension—the presence or absence of antisymmetry/univalence—is also164

well-studied. For instance, a given preorder X can be “completed” into an equivalent poset165

↓ P : its collection of down-sets, ordered by subset inclusion. The proof-relevant analogue of166

this construction is the Rezk completion [1, Thm. 8.5], which, for each category C, obtains a167

weakly-equivalent univalent category as a subcategory of the category of presheaves on C.168

But it will be the back–forth dimension that will occupy our attention here. Throughout,169

we will refer to the back face of the Γ-cube as “polarized” and the front face as “neutral”. Each170

of the back-face categories come equipped with an “opposite” operation: for any category Γ,171

we have the opposite category Γop, which has the same objects as Γ but all morphisms flipped172

around. This extends to a functor (_)op : Cat → Cat. We say that Cat is polarized because,173

in general, Γ and Γop are distinct categories with (perhaps) quite different properties. Not so174

for Grpd: every groupoid is self-dual, i.e. isomorphic to its opposite, and thus there is no real175

point to considering the opposite operation on groupoids. This distinction between polarized176

and neutral will prove crucial to our study.177

Let’s return to considering these categories of structures as models of type theory. Here178

is the key question: what additional type-theoretic constructs do polarized structures model?179

Throughout, we’ll use the category model (and its relationship to the groupoid model) as180

paradigmatic—the other examples will be instances of this relationship. So how can we use181

the opposite endofunctor to define further structure on the category model? Well, the most182

obvious way is as an operation on contexts: since contexts are categories, we can take the183

opposite of any context. Moreover, since the opposite operation is an endofunctor on Cat,184

i.e. it has a morphism part as well, we can have a corresponding operation on substitutions.185

This gives us the following rules.186

Γ: Con
Γ− : Con (Con-Neg)187

σ : Sub ∆ Γ
σ− : Sub ∆− Γ− (Sub-Neg)188

These are subject to the equations (Γ−)− = Γ and (σ−)− = σ, since the opposite operation189

is self-inverse. Furthermore, note that the empty context, which we denote • and interpret190

as the single-object category with only the identity morphism, is definitionally self-dual;191

thus we also include the rule that •− = •. We will endeavor to interpret the meaning of192

these operations more clearly in just a moment, but for now we continue to see where the193

semantics leads.194

The next place where the opposite operation can be incorporated into the type theory is195

in the definition of types. In the category model, a type A : Ty Γ is a Γ-indexed family of196

categories, that is, a functor Γ → Cat. Given such an A, we can post-compose with (_)op, to197

obtain another type in context Γ:198

Γ Cat Cat.A (_)op

199

4 For the case of univalent groupoids and sets (treated synthetically in homotopy type theory as 1-types
and 0-types, respectively), this is the 0-truncation modality.

CVIT 2016

23:6 Deeply-Polarized Type Theory as a Generalized Algebraic Theory

As with the context- and substitution-negation operations, we’ll indicate this operation with200

a superscript minus-sign.201

A : Ty Γ
A− : Ty Γ (Ty-Neg)202

Note that A− is still a type in context Γ, not Γ−—this is because the (_)op functor is203

covariant. Once again, we’ll assert the law that (A−)− = A.204

So far, there is no apparent connection between context-negation and type-negation.205

Moreover, it’s not clear how to actually construct terms of type A−; we have just asserted206

a bald type operation with no rules for making use of it. This brings us to the keystone207

of this ‘negative type theory’: negative context extension. Recall that the ordinary (i.e.208

positive) context extension was given as the total space of the co-fibration obtained by the209

Grothendieck construction: for A : Ty Γ,210 ∣∣Γ ▷+ A
∣∣ :=

∑
γ : |Γ|

|A(γ)|211

(Γ ▷+ A) [(γ0, a0), (γ1, a1)] :=
∑

γ01 : Γ [γ0,γ1]

(A γ1) [A γ01 a0, a1].212

This is the covariant Grothendieck construction, since A is a covariant functor Γ → Cat.213

But now we can discuss contravariant Cat-valued functors as well: a contravariant functor214

A : Γop → Cat is the same thing as a type in context Γ−. Given such a type, we can form215

the negative context extension Γ ▷− A : Con as follows.216 ∣∣Γ ▷− A
∣∣ :=

∑
γ : |Γ|

|A(γ)|217

(Γ ▷− A) [(γ0, a0), (γ1, a1)] :=
∑

γ01 : Γ [γ0,γ1]

(A γ0) [a0, A γ01 a1].218

Here, since A : Γop → Cat, we have that A(γ01) is a functor from A(γ1) to A(γ0), hence why219

we can apply it to a1 : |A(γ1)| to obtain an object of A(γ0). We describe this as the “keystone”220

of the negative polarity because it ties together (Con-Neg), (Sub-Neg), and (Ty-Neg) in the221

following rule. For any contexts Γ, ∆ and any A : Ty Γ−, we have a bijection222

Sub ∆ (Γ ▷− A) ∼=
∑

σ : Sub ∆ Γ

Tm(∆−, A[σ−]−) (LocalRep-Neg)223

natural in ∆. The name (LocalRep-Neg) is short for “negative local representability”— we’ll224

expound the theory of local representability more in subsequent sections. Note that this225

equation, without all the minus signs, is the condition usually assumed to hold between the226

Ty and Tm presheaves and the context extension operation; often the right-to-left direction227

is spelled out explicitly as a ‘pairing’ operation satisfying a universal property (see e.g. [13,228

Defn. 1] or [17, Sect. 3.1]). As we’ll explore in the next section, we can view this as a second,229

parallel CwF structure on the came category of contexts, in addition to the usual, positive230

one.231

But let us mention one more significant property satisfied by the category model, preorder232

model, etc., which we’ll call the distribution law. So far, we have said nothing to connect233

the two context extension operations, though they obviously are closely-related. To see how234

to remedy this, we consider the question: what is (Γ ▷+ A)−? Can we calculate what this235

J. Neumann 23:7

category is, in terms of other operations? Of course, both Γ ▷+ A and its opposite share the236

same set of objects; but what of the morphisms? Well, consider the following calculation.237

(Γ ▷+ A)− [(γ0, a0), (γ1, a1)] = (Γ ▷+ A) [(γ1, a1), (γ0, a0)]238

=
∑

γ10 : Γ [γ1,γ0]

(A(γ0)) [A γ10 a1, a0]239

=
∑

γ10 : Γ− [γ0,γ1]

(A(γ0))− [a0, A γ10 a1]240

= (Γ− ▷− A−) [(γ0, a0), (γ1, a1)]241

In order for the last line to make sense, we need that A− is a type in context (Γ−)−. But242

the latter is, of course, just Γ, so, since A : Ty Γ, we have A− : Ty Γ by (Ty-Neg). Therefore,243

we have one final law which holds in the polarized models of the Γ-cube:244

(Γ ▷s A)− = Γ− ▷−s A− (Distr)245

Here, and throughout, we’ll use s as a metavariable for either polarity, + or −, and −s is246

the opposite polarity. So this law also covers the claim that (Γ ▷− A)− = Γ− ▷+ A−, for247

when A : Ty Γ−. These laws connect the two context extensions—the two arise from opposite248

constructions, and therefore it is little surprise that they can be expressed in terms of each249

other and the negation operations on contexts and types.250

With that, we’re ready to abstractly state what kind of thing our four polarized models251

are.252

▶ Definition 1 (PCwF). A polarized category with families (PCwF) consists of the253

following254

A category Con (whose hom-sets are denoted Sub) with terminal object •255

A presheaf Ty : Conop → Set256

A presheaf Tm : (∫ Ty)op → Set257

An endofunctor (_)− : Con → Con such that (Γ−)− = Γ and (σ−)− = σ for all Γ and σ258

For each context Γ, a function (_)− : Ty Γ → Ty Γ such that (A−)− = A for all A, and259

such that (_)− is stable under substitution:260

(A−)[σ] = (A[σ])−
261

Context extension operations

_ ▷s _ : (Γ: Con) → Ty(Γs) → Con

such that:262

Sub ∆ (Γ ▷s A) ∼=
∑

σ : Sub ∆ Γ Tm(∆s, A[σs]s)263

(Γ ▷s A)− = Γ− ▷−s A−.264

A PCwF is a model of type theory equipped with a negative polarity. As mentioned in the265

introduction, several authors (particularly [25]) define versions of directed type theory which266

include the type-negation operation, but not context- nor substitution-negation, nor negative267

context extension. We adopt the term shallowly-polarized for such theories, as opposed to the268

kind of type theory outlined in Definition 1, which we call deeply-polarized. We borrow the269

“deep” and “shallow” terminology from the theory of domain-specific languages (e.g. [14]),270

though somewhat loosely. A shallowly-polarized type theory just treats negation as a type271

annotation, whereas a deeply-polarized type theory extends the polarization into the basic272

CVIT 2016

23:8 Deeply-Polarized Type Theory as a Generalized Algebraic Theory

mechanics of the type theory, i.e. contexts, substitutions, and the assumption of free variables273

(context extension). Therefore, it seems that a shallowly-polarized type theory could be274

shallowly embedded into an unpolarized host theory, whereas deeply-polarized type theory275

would require a deep embedding. We won’t attempt to make this point precise here—we just276

use the terminology to establish intuition for these different kinds of polarization.277

We’ll set aside the study of polarized type theory for a moment, to introduce our other278

key ingredient: presheaf semantics of higher-order abstract syntax.279

3 Presheaf Semantics of Higher-Order Abstract Syntax280

We saw in the previous section that the type-negation operation (_)− : Ty Γ → Ty Γ had to281

come equipped with a stability under substitution requirement. As the examples of [17, Sect.282

3.3] show, we must do this with every type- or term-former we wish to add to the theory.283

For instance, the Π-type former, which, given A : Ty Γ and B : Ty(Γ ▷ A), forms the type284

Π(A, B) : Ty Γ, comes with the requirement that, for each σ : Sub ∆ Γ,285

Π(A, B)[σ] = Π(A[σ], B[q(σ, A)])286

where q(σ, A)] : Sub (∆▷ A[σ]) (Γ▷ A) is constructed from the local representability condition.287

For a fully-featured type theory like Homotopy Type Theory, it can become quite tedious to288

give such laws for every single construct.289

Ty : U
Tm : Ty → U∗

Π(_,_) : (A : Ty) → (Tm A → Ty) → Ty
lam : ((a : Tm A) → Tm (B a)) ∼= Tm (Π(A,B)) : app

Figure 1 Type theory with Π, as a SOGAT

Although such bureaucracy can be managed, it will nonetheless be worth the effort to290

try and automate away these details. We’ll do so by passing to a higher-order abstract291

syntax (HOAS), which abstracts away from explicit substitutions. This makes stability under292

substitution implicit, so we can focus on giving the appropriate rules for the theory we want.293

Let’s begin with an example: unpolarized type theory with Π-types. A HOAS presentation294

of such a type theory is given in Figure 1. We’ll explain the meaning of these symbols more295

precisely in a moment, but the important thing to note at this point is the relative simplicity296

of this presentation. Though we make use of some shorthands (e.g. stipulating the functions297

lam and app, and insisting they are inverses in just one line), the fact of the matter is that we298

didn’t have to introduce nearly as much stuff as in the corresponding first-order presentation,299

CwFs with Π-types. Namely, we do not explicitly treat contexts and substitutions. Instead of300

articulating the dependency of B on A in the type Π(A, B) using the object language—and301

thereby having to explicitly treat contexts, context extension, substitutions, etc.—we push302

this work into the meta-language, and just ask that B be a meta-language function from303

terms of A into types. Thus there is no need for substitution laws like the ones above.304

This presentation of type theory with Π-types is a second-order generalized algebraic305

theory (a SOGAT), because we allow second-order functions (such as our Π-type former).306

While this is a simpler and leaner presentation of how the type theory works, we may307

J. Neumann 23:9

ultimately want to work with first-order GATs; the model theory of type theories as SOGATs308

is more complicated, while we already understand well the first-order equivalent: the theory309

of CwFs. Thankfully, we can view a SOGAT as a specification of a GAT, that is, translate310

a SOGAT into a GAT capturing the same theory. This is the above-mentioned procedure311

of “de-SOGAT-ification”. To do it, we use Hofmann’s [18] presheaf semantics of HOAS312

to interpret the SOGAT as presheaves, natural transformations, etc. on some unspecified313

category, and then, using a few clever tricks, elaborate this structure to be able to put it in314

GAT form. In the present section, we’ll sketch this process for unpolarized type theory, to315

prepare for the task (next section) of capturing deeply-polarized type theory as a SOGAT316

which unfolds to the GAT of PCwFs.317

Our first step is to recall the presheaf model of [17, Sect. 4]. For what follows, we’ll318

assume we have two Grothendieck universes in our metatheory, Setℓ and Setℓ+1. We’ll call319

sets in the former “small sets” and the latter “large sets”, though, as the generic subscript ℓ320

indicates, this same construction could be performed at every stage of an infinite hierarchy321

of universes.322

▶ Definition 2 (Presheaf Model). The presheaf model (on C) is the category Ĉ = Cop →323

Setℓ+1, endowed with a CwF structure in the following way.324

Ĉon = Cop → Setℓ+1. A morphism σ : Ŝub ∆ Γ is a natural transformation of presheaves325

σ : ∆ → Γ.326

The constant-1 presheaf is the terminal object, which we’ll denote ♦ : Ĉon. Write !Γ for327

the unique natural transformation Ŝub ♦ Γ.328

For Γ : Ĉon, we define T̂y(Γ) as the set of small presheaves on the category of elements329

of Γ. That is, T̂y(Γ) = (∫ Γ)op → Setℓ.330

Terms of type A in context Γ are dependent natural transformations from Γ to A:

T̂m(Γ, A) =
∫

I:C
(ϕ : ΓI) → A(I, ϕ).

Note that we decorate the components of this model with hats; this convention will help331

prevent confusion later on. In addition to the basic CwF structure, presheaf models interpret332

rich type theories. In particular, presheaf models come equipped with extensional identity333

types (which we’ll denote with ≡) and Π-types. The latter are interpreted in the usual334

‘Kripke-style’, utilizing the dependent Yoneda Lemma. Consider the special case where335

A, B : T̂y♦, i.e. A, B : Cop → Setℓ (as here, we’ll frequently coerce along the isomorphism336

∫ ♦ ∼= C), then the function type (A ⇒ B) : T̂y♦ is given by337

(A ⇒ B) I =
∫

J : C
C [J, I] × A(J) → B(J), (Ĉ exponentials)338

i.e. the usual exponential BA in the presheaf category.339

The theory of presheaf models has another feature which will be relevant for our purposes:340

type universes. As briefly mentioned in [17, Sect. 4] and then elaborated in more detail in341

[20], we can “lift” the Grothendieck universe Setℓ from our metatheory into the theory of the342

presheaf model, to obtain a type that classifies types.343

▶ Proposition 3. The presheaf model on C gives semantics for a large closed type, that is, a344

Setℓ+1-valued presheaf U on C ∼= ∫ ♦, such that there is a natural isomorphism345

T̂m(Γ, U [!Γ]) ∼= T̂y(Γ). (Fundamental Property of U)346

CVIT 2016

23:10 Deeply-Polarized Type Theory as a Generalized Algebraic Theory

This is specified as a large type to avoid it classifying itself, which would lead to a paradox.347

Now, observe that if we take a closed type like U and weaken it into context Γ, then a term of348

the resulting type U [!Γ] is the same thing as a natural transformation from Γ to U because349

U doesn’t actually depend on Γ. Thus the left-hand side of (Fundamental Property of U)350

could be written as Ŝub Γ U—this will be useful later on. Now, in the proof of Proposition 3,351

included in Appendix A, uses Yoneda-style reasoning to deduce that, if we define U(I) to be352

the set (C/I)op → Setℓ (that is, small presheaves on the slice category C/I), then we can353

prove (Fundamental Property of U). So this will be our definition.354

With this, we can begin to recover the GAT of Π-CwFs from the SOGAT in Figure 1.355

We interpret the latter in the “host theory” of the presheaf model on some unspecified356

category C, and then elaborate the presheaf model semantics to obtain a specification of357

what structure C must bear. Let’s read the lines of Figure 1 one-by-one. To begin, the line358

Ty : U, interpreted in the presheaf model, says Ty : T̂m(♦, U). We can then chain together359

the following isomorphisms:360

T̂m(♦, U) ∼= T̂y(♦) (Fundamental Property of U)361

= (∫ ♦)op → Set0 (Defn.)362

∼= Cop → Setℓ.363

Thus, the assertion Ty : U tells us that Ty is a presheaf on the category C, so we have364

succeeded in recovering some of the structure of a CwF.365

The next line says Tm : Ty → U∗; for the moment, just read U∗ as U, so that366

Tm : T̂m(♦, Ty ⇒ U), which can be transformed to be a structure atop C as follows.367

T̂m(♦, Ty ⇒ U) ∼= Ŝub ♦ (Ty ⇒ U)368

∼= Ŝub Ty U (CCC structure on Ĉ)369

∼= T̂y(Ty) (Fundamental Property of U)370

= (∫ Ty)op → Setℓ. (Defn.)371

In the middle of this calculation, we were treating Ty as a context in the presheaf model: it372

is, after all, a presheaf on C. But, equivalently, we can understand this as the empty context373

♦ extended (using the presheaf model’s context extension operation) by a single variable of374

type Ty, which makes sense, as Ty : T̂y(♦) from above.375

Now, both of these elaborations have resulted in GAT structure: as Dybjer [13, Section376

2.2] showed, the requirements that C is a category with families Ty : Cop → Setℓ and377

Tm : (∫ Ty)op → Setℓ can be expressed as a generalized algebraic theory. We run into issues,378

however, if we try to do the same for the Π-type former of Figure 1. Given A : T̂m(♦, Ty),379

that is, a global section of the Ty presheaf,380

A :
∫

I : C
Ty(I),381

we can construct the presheaf Tm|A : Cop → Setℓ by sending I to Tm(I, AI). We use this to382

begin calculating the type of Π(A, _):383

T̂m(♦, (Tm|A ⇒ Ty) ⇒ Ty) ∼= Ŝub (Tm|A ⇒ Ty) Ty.384

Now the presheaf (Tm|A ⇒ Ty), by (Ĉ exponentials), has object part385

(Tm|A ⇒ Ty)I =
∫

J : C
C [J, I] × Tm(J, AJ) → Ty(J).386

J. Neumann 23:11

The issue is that Π(A, _) remains a second-order function: Tm(J, AJ) occurs negatively in387

this expression, and thus we cannot incorporate it into the GAT we have been building.388

The reason for our issue is that we did not involve context extension. Our hypothesis389

has been that Figure 1, interpreted in presheaf models and then elaborated, will yield the390

GAT of Π-CwFs. But the theory of CwFs is incomplete without context extension to tie391

together contexts, substitutions, types, and terms. And the operations defining Π-types as392

a type-former atop a CwF structure certainly presupposes context extension. So we need393

to locate the germ of context extension within our second-order theory. But this raises394

an immediate question: how do we talk about context extension when we have no explicit395

contexts? It turns out there’s an elegant way to smuggle in the logic of context extension,396

which doesn’t force us to axiomatize contexts, substitutions, etc. in the higher object theory397

(and thereby nullify its advantages as a higher-order abstract syntax), but makes it available398

to fix our Π-issue. In the simply-typed case, Hofmann observed that the representability399

of presheaves resolved this issue, by allowing one to rewrite negative occurences using the400

Yoneda Lemma. We’ll do the dependently-typed analogue here, using dependent presheaves401

and local representability.402

▶ Definition 4 (Local Representability). Given F : Cop → Set, a presheaf G : (∫ F)op → Set403

is called locally representable if, for each I : |C| and X : F (I), the restricted presheaf404

G|X : (C/I)op → Set405

G|X(J, i) = G(J, F i X)406

is representable.407

The paradigm example of a locally representable presheaf is the Tm presheaf of any CwF:408

given a context I and a type B : Ty I, the restricted presheaf Tm|B is represented by the pair409

(I ▷ B, pB) : Con/I. The fact that Tm|B is naturally isomorphic to the representable presheaf410

Sub (_) (I ▷ B) is precisely the isomorphism we referred to as “the local representability”411

condition before.412

So let’s see how this solves our issue. Let’s return to this expression before, where we got413

stuck:414 ∫
J : C

C [J, I] × Tm(J, AJ) → Ty(J).415

The naturality of A says that for every i : C [J, I], we have that AI [i] = AJ .5 Therefore, we416

can introduce a spurious dependence between the two terms to the left of the arrow, and417

rewrite this equivalently as418 ∫
J : C

 ∑
i : C [J,I]

Tm(J, AI [i])

 → Ty(J).419

The left-hand side of the arrow ought to look familiar: it is precisely this expression which420

local representability governs. More precisely, if Tm is locally representable, this means that421

we have an object I.AI of C, along with a morphism pAI
: C [I.AI , I] such that422

C [J, I.AI] ∼=
∑

i : C [J,I]

Tm(J, AI [i])423

5 The substitution here is the morphism part of the Ty presheaf already deduced.

CVIT 2016

23:12 Deeply-Polarized Type Theory as a Generalized Algebraic Theory

naturally in (J, i). If this is so, then our expression for (Tm|A ⇒ Ty) I becomes424 ∫
J : C

C [J, I.AI] → Ty(J),425

which Yoneda tells us is isomorphic to Ty(I.AI). Thus we’ve eliminated the negative426

appearance of Tm(J, AJ) in the argument, and we obtain a description of the Π-type former427

as a generalized algebraic operation:428

T̂m(♦, (Tm|A ⇒ Ty) ⇒ Ty) ∼= Ŝub (Tm|A ⇒ Ty) Ty429

=
∫

I : C
(Tm|A ⇒ Ty) I → Ty(I)430

∼=
∫

I : C
Ty(I.AI) → Ty(I).431

This is the shape of the familiar Π-type former in the framework of CwFs: for each I, it432

turns types in I.AI into types in I. The naturality condition says that this type-former is433

stable under substitution,6 which is exactly the condition we wanted to make implicit in the434

syntax.435

So all that remains is to explain how we say in the HOAS that Tm is locally representable.436

This is the reason why Tm is written as Ty → U∗. Recall that U(I) was defined as the set of437

all small presheaves on C/I. Since C/I is the category of elements of yI, we can understand438

such a presheaf as a dependent presheaf over yI. It therefore makes sense to speak of local439

representability for such presheaves, as in the following definition and claim.440

▶ Definition 5. Define U∗ : Cop → Setℓ+1 as the subpresheaf of U consisting of only those441

presheaves which are locally representable. That is, U∗(I) is the set of those presheaves442

G : (C/I)op → Setℓ equipped with, for each J : |C| and i : C [J, I], an object J.i and morphism443

pi : C [J.i, J] such that444

C [K, J.i] ∼=
∑

j : C [K,J]

G(K, i ◦ j)445

naturally in (K, j).446

▶ Proposition 6. There is a natural isomorphism447

T̂m(Γ, U∗) ∼= T̂yl.r.(Γ) (Fundamental Property of U∗)448

where T̂yl.r.(Γ) is the set of locally representable presheaves (∫ Γ)op → Setℓ.449

So then, modifying our calculations from above, the assertion Tm : Ty → U∗ ends up meaning450

that Tm : T̂yl.r.(Ty), and thus that Tm is not just a dependent presheaf on Ty, but a locally451

representable one, as desired.452

We’ve sketched here the essential ideas, and these can be carried much further. If we453

spell out the isomorphism given in Figure 1 as terms of two mutually-inverse functions lam454

and app, we can obtain the λ-abstraction, application, β, and η laws. The former two will be455

6 The version given here is only for a “global type” like A. To get the usual statement of the Π-type
former and its substitution law, we would need to include the dependence on A as well, i.e. modify
Figure 1 to say Π: (A : Ty) → (Tm A → Ty) → Ty. We only avoid doing so here for simplicity of
exposition.

J. Neumann 23:13

natural transformations, whose naturality condition states the stability under substitution456

condition—just like the Π-type former above. Thus we complete the theory of Π-CwFs as457

a GAT obtained from the SOGAT in Figure 1. We can further augment this with a huge458

variety of type- and term-formers: anything which is expressible in the SOGAT language,459

with the restriction that only elements of U∗ can appear doubly-negative (so that we can460

rewrite using local representability).461

4 Abstract and Concrete Polarization462

We now merge these two threads and arrive at our central question: how can deeply-polarized463

type theory be treated in a higher-order abstract syntax? That is, can we write a SOGAT464

presentation of deeply-polarized type theory, which elaborates to the theory of PCwFs via the465

procedure given in the previous section? The issue is that there is a contradiction between466

deep and high: we said that “deeply-polarized” meant that the polarization acted upon467

the contexts, substitutions, and context extensions of the theory; but it is precisely these468

elements which are made implicit when passing to a higher-order abstract syntax. How can469

we study operations on contexts, in a language which expressly avoids referring to contexts?470

As we did with context extension and local representability, we need to find a way to471

incorporate the logic of deep polarization into the second-order syntax, so that it unfolds to the472

polarization operations of Definition 1 when we de-SOGAT-ify. Let’s revisit (LocalRep-Neg):473

Sub J (I ▷− A) ∼=
∑

i : Sub J I

Tm(J−, A[i−]−).474

Here we’ve switched to I, J for contexts, in anticipation of dealing with presheaves. In this475

equation, A : Ty(I−). The first key insight is that we can view Ty(I−) as a presheaf in I, the476

composition of Ty after (_)−:477

Ty− : Conop → Set478

Ty−I = Ty(I−)479

Ty−(i : Sub J I) : Ty−(I) → Ty−(J)480

Ty− i A = A[i−].481

Moreover, we can do the same with Tm.482

Tm− : (∫ Ty−)op → Set483

Tm−(I, A) = Tm(I−, A−)484

Tm−(i) : Tm−(I, A) → Tm−(J, Ty− i A)485

Tm− i t = t[i−].486

Note that the stability of type-negation under substitution is required for this definition to487

typecheck. Now, it might not be clear why Tm−(I, A) was chosen to be Tm(I−, A−) and488

not Tm(I−, A), as either definition would make sense. But if we adopt the former, then489

(LocalRep-Neg) simplifies nicely:490

Sub J (I ▷− A) ∼=
∑

i : Sub J I

Tm−(J, Ty− i A).491

So, (LocalRep-Neg) says that Tm− is locally representable, with respect to Ty−. This makes492

good on the idea that a PCwF is a category of contexts with two parallel family structures,493

positive and negative.494

Let’s encapsulate this structure in a definition.495

CVIT 2016

23:14 Deeply-Polarized Type Theory as a Generalized Algebraic Theory

▶ Definition 7 (Abstractly-Polarized CwF). An abstractly-polarized CwF is a CwF496

(Con, Sub, Ty, Tm, . . .) equipped with:497

A presheaf Ty− : Conop → Set498

A locally representable presheaf Tm− : (∫ Ty−)op → Set499

Natural transformations (_)− : Tys → Tys
500

such that501

The (_)− transformations are both self-inverse502

Ty • = Ty− •503

if Ty(J) = Ty−(J ′), then, for all B : Ty(J),

Ty(J ▷+ B) = Ty−(J ′ ▷− B−).

We call this “abstractly-polarized” because there is no explicit context-negation operation:504

it has been folded into Ty− and Tm−. We do, however, still include the type-negation505

operation—the reason for this will be clear shortly. The latter two requirements, which506

bind together the two structures, will also be useful later. For the sake of comparison,507

we’ll refer to the PCwFs of Definition 1 as “concretely-polarized”, since we do have the508

context-negation operation given explicitly. Notice that the structure common to both these509

definitions—the positive CwF structure and type negation—is what we referred to above as510

“shallowly-polarized” type theory: abstract and concrete can thus be seen as two means of511

articulating the extension of shallow polarization to deep polarization.512

With this definition, we can return to our main task: expressing deeply-polarized type513

theory as a SOGAT. The advantage of abstract polarization is that it doesn’t refer to explicit514

operations on contexts. Indeed, it translates nicely into a SOGAT, given in Figure 2.515

Tys : U
Tms : Tys → U∗

(_)− : Tys → Tys

self−inv : (A : Tys) → (A−)− ≡ A
Π(_,_) : (A : Ty−) → (Tm− A → Ty) → Ty
lam : ((a : Tm− A) → Tm (B a)) ∼= Tm (Π(A,B)) : app

Figure 2 Deeply-polarized type theory with Π, as a SOGAT

The calculations go much the same as in the previous section. For instance, in order516

to resolve the negative appearance of Tm−(A) in the argument to the Π-type former, we517

must make use of the local representability of Tm− with respect to Ty−, which, as before, is518

asserted by Tm− : Ty− → U∗. The polarities on the Π-type constructs are taken from the519

deeply-polarized Π-types of [22] the positive and negative polarities mark the positive and520

negative occurrences (in the usual sense) within a (dependent) function expression.521

This SOGAT almost unfolds to give us the GAT of abstractly-polarized CwFs (plus522

polarized Π-types). The only shortcoming is the final two requirements of Definition 7:523

that Ty and Ty− agree on the empty context, and recursively agree across their respective524

context-extension operations. It’s not clear how to assert these in the second-order theory.525

We could omit these requirements from the definition, but then there would be nothing526

connecting the two CwF structures together, or either to the type-negation operations.527

Moreover, as we discuss below, this would complicate the connection between abstract and528

J. Neumann 23:15

concrete polarization. So, for the purposes of the present work, we’ll simply allow ourselves529

to assert these equations as part of the de-SOGAT-ification process. Clarifying this situation530

will be one of the key tasks in developing a SOGAT account of modal type theory.531

We conclude this section by considering the circumstances under which abstract and532

concrete polarization would coincide. As demonstrated above, every concretely-polarized533

CwF determines an abstract polarization structure, by defining Ty− and Tm− in terms of534

Ty, Tm, and the type- and context-negation operations. To go the other way around, however,535

requires further assumptions. Namely, we need to be able to do induction on contexts,536

so we can use the components of the abstractly-polarized CwF to concretely define the537

context-negation operation. To do this, we take the definition of a contextual CwF from [12,538

Defn. 2], and “polarize” it.539

▶ Definition 8 (Polar-Contextual CwF). An abstractly-polarized CwF is polar-contextual540

iff there is ℓ : Con → N, a length function, such that ℓ(J) = 0 iff J = •, and ℓ(J) = n + 1 iff541

exactly one of the following holds:542

there is a unique I : Con and A : Ty(I) such that J = I ▷+ A and ℓ(I) = n, or543

there is a unique I : Con and A : Ty−(I) such that J = I ▷− A and ℓ(I) = n.544

The purpose of this definition is to permit recursive definitions on contexts: if a abstract545

PCwF is polar-contextual, then an operation on contexts can be defined by specifying its546

action on the empty context and then recursively on (positively- and negatively-extended547

contexts (the only purpose served by the length function is to guarantee this is well-founded).548

Our conjecture is that we can construct the free abstract PCwF, a syntax model, and that it549

will be necessarily polar-contextual. So, the abstract/concrete distinction would disappear in550

the syntax. However, we leave detailed study of this idea to future work.551

Given a polar-contextual PCwF, we then define the context-negation operation as follows.552

•− = •553

(I ▷+ A)− = I− ▷− A−
554

(I ▷− A)− = I− ▷+ A−
555

What we’ve done here is turn the “Distribution laws” required of concretely-polarized CwFs in556

Definition 1 into a definition. It is here that we make use of the two problematic requirements557

from Definition 7: in the second clause of this definition, we take A : Ty(I) on the left-hand558

side of the equals sign, but A : Ty−(I−) on the right. When we were dealing with concrete559

PCwFs, this was no issue, as Ty− was Ty ◦ (_)− and (I−)− = I. But here we have to make560

this an explicit requirement in order for the recursion to carry through.561

5 Conclusion and Future Work562

Here, we have identified polarization as an additional dimension of type theory and indicated563

how deeply-polarized type theories can be treated as both a first- and second-order generalized564

algebraic theory, the latter serving as a statement of deeply-polarized type theory in a565

higher-order abstract syntax. We ultimately adopted two first-order GATs describing deeply-566

polarized type theory, which we termed concrete and abstract. The former arose more567

immediately in our choice models and managed to connect the positive and negative CwF568

structures, but only the latter lent itself to being abstracted to a higher-order theory. It569

remains for future work to fully understand the relationship between these notions, and570

resolve definitively whether concrete polarization can similarly be abstracted.571

There are numerous other questions to explore in this vein. The most immediate is572

figuring out how to represent the unpolarized type theory within the syntax of polarized573

CVIT 2016

23:16 Deeply-Polarized Type Theory as a Generalized Algebraic Theory

type theory. For instance, the category Grpd is both a reflective and coreflective subcategory574

of Cat: the inclusion/forgetful functor of Grpd ↪→ Cat has left- and right-adjoints, called575

localization and core. Core types have received particular attention in the directed type576

theory literature (e.g. [25] uses them to state directed path induction), but treating core as a577

deep operation on contexts is more difficult: while it is possible to define operators Ty0 and578

Tm0 analogous to our notion of abstract polarization, the isomorphism they would satisfy579

does not have the shape of a local representability law like (LocalRep-Neg), so it’s unclear580

how to abstract it to HOAS. A solution to this question might suggest how multi-modal type581

theories such as [15] could be treated in the HOAS/SOGAT setting.582

A presentation of unpolarized and polarized type theory in the same higher-order abstract583

syntax would likely be a prerequisite for such a treatment of full directed type theory. In [6],584

we develop directed path induction in the category model, but only in neutral contexts, i.e.585

groupoids. We would like to develop adequate machinery to be able to study directed type586

theory in a higher-order abstract syntax, eventually building a directed analogue to the work587

of [5].588

Finally, presheaf models whose base category is itself the category of contexts for a589

CwF—as we’ve dealt with here—is often studied as a two-level type theory (2LTT), where590

the base CwF interprets the “inner type theory” and the presheaf model interprets the “outer591

type theory”. Taking this view, what we’ve studied here are type theories whose inner theory592

is polarized, but whose outer theory is not. The most apparent way to polarize the outer593

theory would be to consider presheaves that take values in the polarized categories of the594

Γ-cube, i.e. study the back face of the “Kripke-fied” Γ-cube:595

PosC
op

U-CatC
op

SetC
op

U-GrpdCop

PreordCop
CatC

op

SetoidCop
GrpdCop

.

596

References597

1 Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the598

rezk completion. Mathematical Structures in Computer Science, 25(5):1010–1039, 2015.599

2 Benedikt Ahrens, Paige Randall North, and Niels van der Weide. Bicategorical type theory:600

semantics and syntax. Mathematical Structures in Computer Science, 33(10), 2023.601

3 Thorsten Altenkirch. Extensional equality in intensional type theory. In Proceedings. 14th602

Symposium on Logic in Computer Science (Cat. No. PR00158), pages 412–420. IEEE, 1999.603

4 Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, Christian Sattler, and Filippo Sestini.604

Constructing a universe for the setoid model. In FoSSaCS, pages 1–21, 2021.605

5 Thorsten Altenkirch, Yorgo Chamoun, Ambrus Kaposi, and Michael Shulman. Internal606

parametricity, without an interval. Proceedings of the ACM on Programming Languages,607

8(POPL):2340–2369, 2024.608

6 Thorsten Altenkirch and Jacob Neumann. The category interpretation of directed type theory.609

arXiv preprint, 2024.610

7 Steve Awodey. Natural models of homotopy type theory. Mathematical Structures in Computer611

Science, 28(2):241–286, 2018.612

8 Rafaël Bocquet. External univalence for second-order generalized algebraic theories.613

arXiv:2211.07487, 2022.614

J. Neumann 23:17

9 Rafaël Bocquet, Ambrus Kaposi, and Christian Sattler. For the metatheory of type theory,615

internal sconing is enough. arXiv preprint arXiv:2302.05190, 2023.616

10 Simon Pierre Boulier. Extending type theory with syntactic models. PhD thesis, Ecole nationale617

supérieure Mines-Télécom Atlantique, 2018.618

11 John Cartmell. Generalised algebraic theories and contextual categories. Annals of pure and619

applied logic, 32:209–243, 1986.620

12 Simon Castellan, Pierre Clairambault, and Peter Dybjer. Categories with families: Unityped,621

simply typed, and dependently typed. Joachim Lambek: The Interplay of Mathematics, Logic,622

and Linguistics, pages 135–180, 2021.623

13 Peter Dybjer. Internal type theory. In International Workshop on Types for Proofs and624

Programs, pages 120–134. Springer, 1995.625

14 Jeremy Gibbons and Nicolas Wu. Folding domain-specific languages: deep and shallow626

embeddings (functional pearl). In Proceedings of the 19th ACM SIGPLAN international627

conference on Functional programming, pages 339–347, 2014.628

15 Daniel Gratzer, GA Kavvos, Andreas Nuyts, and Lars Birkedal. Multimodal dependent type629

theory. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer630

Science, pages 492–506, 2020.631

16 Martin Hofmann. A simple model for quotient types. In International Conference on Typed632

Lambda Calculi and Applications, pages 216–234. Springer, 1995.633

17 Martin Hofmann. Syntax and semantics of dependent types. In Extensional Constructs in634

Intensional Type Theory, pages 13–54. Springer, 1997.635

18 Martin Hofmann. Semantical analysis of higher-order abstract syntax. In Proceedings. 14th636

Symposium on Logic in Computer Science (Cat. No. PR00158), pages 204–213. IEEE, 1999.637

19 Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. Twenty-638

five years of constructive type theory (Venice, 1995), 36:83–111, 1995.639

20 Martin Hofmann and Thomas Streicher. Lifting grothendieck universes. Unpublished note,640

199:3, 1999.641

21 Nicolai Kraus. Truncation levels in homotopy type theory. PhD thesis, University of Nottingham,642

2015.643

22 Daniel R Licata and Robert Harper. 2-dimensional directed dependent type theory. 2011.644

23 Per Martin-Löf. An intuitionistic theory of types: Predicative part. In H.E. Rose and J.C.645

Shepherdson, editors, Logic Colloquium ’73, volume 80 of Studies in Logic and the Foundations646

of Mathematics, pages 73–118. Elsevier, 1975.647

24 Per Martin-Löf. Constructive mathematics and computer programming. In L. Jonathan648

Cohen, Jerzy Łoś, Helmut Pfeiffer, and Klaus-Peter Podewski, editors, Logic, Methodology and649

Philosophy of Science VI, volume 104 of Studies in Logic and the Foundations of Mathematics,650

pages 153–175. Elsevier, 1982.651

25 Paige Randall North. Towards a directed homotopy type theory. Electronic Notes in Theoretical652

Computer Science, 347:223–239, 2019.653

26 Andreas Nuyts. Towards a directed homotopy type theory based on 4 kinds of variance. Mém.654

de mast. Katholieke Universiteit Leuven, 2015.655

27 Frank Pfenning and Conal Elliott. Higher-order abstract syntax. ACM sigplan notices,656

23(7):199–208, 1988.657

28 Emily Riehl and Michael Shulman. A type theory for synthetic ∞-categories. arXiv preprint658

arXiv:1705.07442, 2017.659

29 Filipo Sestini and Thorsten Altenkirch. Naturality for free!—the category interpretation of660

directed type theory, 2019. The International Conference on Homotopy Type Theory (HoTT661

2019).662

30 Taichi Uemura. Abstract and concrete type theories. PhD thesis, University of Amsterdam,663

2021.664

CVIT 2016

23:18 Deeply-Polarized Type Theory as a Generalized Algebraic Theory

31 Taichi Uemura. A general framework for the semantics of type theory. Mathematical665

Structures in Computer Science, 33(3), mar 2023. URL: http://dx.doi.org/10.1017/666

S0960129523000208, doi:10.1017/s0960129523000208.667

32 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of668

Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.669

33 Benno Van Den Berg and Richard Garner. Types are weak ω-groupoids. Proceedings of the670

london mathematical society, 102(2):370–394, 2011.671

A Addenda672

Here is the proof of Proposition 3:673

Proof. To determine what U : Cop → Set1 must be, we use Yoneda-style reasoning: if we674

had such a U, then we could deduce the following.675

U I ∼= Ŝub (yI) U (Yoneda Lemma)676

∼= T̂y(yI) (Fundamental Property of U)677

= (C/I)op → Set0678

Thus it would be a good choice to define U(I) to be the set of small presheaves on the679

slice category C/I. We can then rearrange the above to see that U satisfies (Fundamental680

Property of U) for any representable Γ. This then extends to arbitrary Γ, by application of681

the co-Yoneda Lemma, also known as the density theorem, which says that every presheaf is682

the colimit of representables.683

Ŝub Γ U ∼= Ŝub
(

colim
(I,ϕ) : ∫ Γ

yI

)
U (co-Yoneda Lemma)684

∼= lim
(I,ϕ) : ∫ Γ

Ŝub (yI) U (Yoneda preserves limits)685

∼= lim
(I,ϕ) : ∫ Γ

T̂y(yI) (above)686

∼= T̂y
(

colim
(I,ϕ) : ∫ Γ

yI

)
(*)687

∼= T̂y(Γ) (co-Yoneda Lemma)688

The step marked (*), that T̂y preserves limits, can be proved relatively easily by elementary689

methods. ◀690

http://dx.doi.org/10.1017/S0960129523000208
http://dx.doi.org/10.1017/S0960129523000208
http://dx.doi.org/10.1017/S0960129523000208
https://doi.org/10.1017/s0960129523000208
https://homotopytypetheory.org/book

	1 Introduction
	1.1 Contribution and Organization
	1.2 Related Work
	1.3 Metatheory and Notation

	2 The Gamma-Cube and PCwFs
	3 Presheaf Semantics of Higher-Order Abstract Syntax
	4 Abstract and Concrete Polarization
	5 Conclusion and Future Work
	A Addenda

