
The Category Interpretation of Directed Type Theory
Thorsten Altenkirch

University of Nottingham

Nottingham, United Kingdom

thorsten.altenkirch@nottingham.ac.uk

Jacob Neumann

University of Nottingham

Nottingham, United Kingdom

jacob.neumann@nottingham.ac.uk

Abstract
The field of directed type theory seeks to design type theories

capable of reasoning synthetically about (higher) categories,

by generalizing the symmetric identity types of Martin-Löf

Type Theory to asymmetric Hom-types. So far, the main ap-

proaches to directed type theory proceed in a “somewhat

indirect” manner: axiomatizing the directed interval type and

defining the machinery of directed type theory in terms of it.

In this paper, we take the first step towards a ‘directed homo-

topy type theorywithout the directed interval’ by developing
a directed analogue of Hofmann and Streicher’s groupoid

model—the category model. The directed type theory this

models is adequate for synthetic 1-category theory; the ex-

tent to which this approach extends to higher dimensions

is the subject of ongoing investigation. Moreover, since the

semantics of this theory are expressed in terms of categories
with families, these results promise to interface elegantly

with current research into generalized algebraic theories and

(higher) observational type theory.

Keywords
semantics, directed type theory, homotopy type theory, cate-

gory theory

ACM Reference Format:
Thorsten Altenkirch and Jacob Neumann. 2024. The Category In-

terpretation of Directed Type Theory. In Proceedings of ACM Con-
ference (Conference’17). ACM, New York, NY, USA, 12 pages. https:

//doi.org/XXXXXXX.XXXXXXX

1 Introduction
One of the central constructs of Martin-Löf Type Theory

(MLTT) [22, 23] are its identity types: for any given terms

t,t' of the same type, we have a type Id(t,t') encoding the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

proposition that t and t' are identical; the elements of this

type (if there are any) are proofs that t equals t'. Because the
formation of identity types can be iterated—for p,q: Id(t,t')
we can form the type Id(p,q), and so on—a natural question

arose: are identity proofs unique? That is, given two terms of

type Id(t,t'), i.e. two proofs, p and q, that t and t' are identical,
can we always construct a proof that p and q must also be

identical?

One of the most important results in the history of type

theory is Hofmann and Streicher’s proof [16] answering this

question in the negative: the uniqueness of identity proofs
principle (UIP) is independent of the rules of Martin-Löf

Type Theory. To show that UIP (or its equivalent formula-

tion, Streicher’s Axiom K) is not provable, they construct

a countermodel, the groupoid model of type theory, which
models all the rules of MLTT but violates UIP. While such

an independence result is, on its own, quite remarkable, this

paper also is notable for setting into motion several lines of

thought which would later be absolutely central to homotopy

type theory. Perhaps most significantly, it contains the state-

ment of (a special case of) Voevodsky’s univalence axiom,

prefiguring the observation that univalence is necessary for

managing iterated identities in the absence of UIP.

Another essential insight stemming from this work is the

notion of types as synthetic (higher) groupoids. Like any rea-

sonable notion of ‘identity’, identity in MLTT is reflexive,

symmetric, and transitive. This means that every term t
comes with a term reflt : Id(t,t), that identity proofs of type

Id(t,t') can be ‘inverted’ to get proofs of type Id(t',t), and that
we can ‘compose’ terms of Id(t,t') with terms of Id(t',t'') to
get terms of type Id(t,t''). Mathematically, this is the data of

a higher groupoid: the objects of the groupoid are the terms

of the type and Id(t,t') is the collection of morphisms from

t to t'. It is a higher groupoid (a weak 𝜔-groupoid) because

of the iteration of identity types: Id(t,t') is itself a type, and
therefore has the groupoidal structure of identity between its
terms, and those identities have identities between them, and

so on. This creates an exciting possibility: that one can use

the language of MLTT (which is essentially a programming

language, and hence relatively tractable) to reason directly

about weak 𝜔-groupoids (which are difficult to define and

work with using standard mathematical foundations). This

synthetic theory of higher groupoids (and the closely-related

https://orcid.org/0009-0003-5858-466X
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference’17, July 2017, Washington, DC, USA Thorsten Altenkirch and Jacob Neumann

synthetic homotopy theory) serves as a key motivation for

homotopy type theory.

The usual way of defining a groupoid is as a category

where every morphism is invertible. Thus, categories are a

generalization of groupoids, in the same way that monoids

generalize groups and that preorders generalize equivalence

relations. There are homotopy type theoretic treatments

of category theory (e.g. [2]), but the ‘categories’ in such a

theory are a very different kind of thing than the above-

mentioned weak 𝜔-groupoids: the former is analytic, i.e. the
structure of a category must be meticulously defined in terms

of the type theory, conditions like associativity and functori-

ality must be checked by hand, and it remains very difficult

to define higher categories. This is a rather peculiar: why

would groupoids and categories be entirely different kinds

of structures? Is it possible to rectify this, and generalize

homotopy type theory such that types are synthetic higher

categories? This question is the impetus for directed type
theory. In a directed (homotopy) type theory, the identity

types of MLTT are replaced by Hom-types; the terms of type

Hom(t,t')—which we’ll call directed paths from t to t'—still in-
clude refl and are closed under composition (corresponding

to the identity morphisms and composition in a category),

but are not assumed to be symmetric/invertible. Such a the-

ory would subsume ordinary, undirected type theory and,

presumably, include operations for constructing groupoids

out of categories, corresponding to the ‘localization’ and

‘core’ functors that are left- and right-adjoint (respectively)

to the inclusion of groupoids into categories.

However, the project of articulating directed type theory

has proven rather difficult. In particular, a number of issues

arise relating to variance. In undirected type theory, there

is no concern over whether terms or types depend on each

other positively (i.e. covariantly) or negatively (contravariantly)—
this distinction is invisible in the presence of symmetry. In

directed type theory, however, it must be dealt with. Also,

it’s not obvious which aspects of undirected type theory

ought to be ‘made directed’ and which ought to be left alone.

For instance, the groupoid model is so named because it

uses groupoids in two key aspects: it interprets contexts as

groupoids, and it interprets types as families of groupoids.

To define its directed analogue, the category model, should
we replace groupoids with categories in both instances? Or

just one? The literature already includes a variety of differ-

ent directed type theories, whose features, differences, and

relationships are still to be fully understood.

1.1 Related Work
1.1.1 Directed Type Theories We can categorize the various

directed type theories according to (i) whether or not they

adopt a modal typing discipline to control variance, and,

among those that do, (ii) the ‘depth’ of the modalities and

(iii) how many ‘dimensions’ of directed paths are asserted

judgmentally. The various directed type theories also differ

in terms of their semantics: some do not have semantics, and

those that do adopt different notions of ‘model’.

The first work in modern directed type theory is the the-

ory of Licata and Harper [21]. This is a directed type theory

which treats variances modally: any variable must be tagged

with a polarity, either ‘positive’ or ‘negative’, and this re-

stricts how the variable may be used. For instance, in the

term _x.M : Π(x:A).B, the variable 𝑥 must bear a negative

marking (written x:A−
), since it appears in a negative po-

sition (the domain of a function). Moreover, this theory is

what we’ll call “deeply-polarized”, meaning there’s an op-

eration of ‘context negation’: for each context Γ, there is a
context Γop containing the same variables as Γ but with the

opposite polarity. Finally, this theory is, to use Licata and

Harper’s terminology, 2-dimensional, because it has syntax
for directed reductions between parallel substitutions. This

is interpreted inside the 2-category of categories: contexts

are categories, substitutions are functors, and reductions

between substitutions are interpreted as natural transforma-

tions. The negation operation on contexts is interpreted as

the ‘opposite category’ construction, which fits nicely with

the notion that ‘negative’ means ‘contravariant’. However,

this interpretation is somewhat ad-hoc: the authors do not

identify a general model theory of which this is an instance.

Nuyts [25] carries on in a similar vein, but with some

important changes. In particular, he notes that the Licata–

Harper theory cannot accommodate Martin-Löf identity

types without them coinciding with (and therefore enforcing

symmetry upon) the directed reductions. Thus, the Licata–

Harper theory is expanded to include “isovariance” and “in-

variance”, two further polarities. This theory is much richer

and more capable of offering a directed analogue to the vari-

ous constructions of the HoTT Book [28].

There is, however, one significant way in which the theo-

ries of Licata-Harper and Nuyts do not provide the directed

analogue of higher-groupoids-as-iterated-identity-types: the

Homs in these theories are not Hom-types, but rather Hom-

judgments. This means that, in these theories, we cannot

iterate Hom: the Licata-Harper theory has exactly two dimen-

sions, because that is how many were added by hand. Notic-

ing this drawback, North [24] outlines a directed type theory

which is not deeply-polarized, but is shallowly-polarized:
given a type A, we can form the types Aop

and Acore
, repre-

senting contravariant and isovariant terms of A, but we do
not have similar operations on contexts. North’s theory is

higher-dimensional in the sense that Hom-formation can

be iterated arbitrarily, but is 1-dimensional in the sense of

Licata-Harper. Similar to Licata-Harper, North provides an

interpretation of the syntax, but not a general model theory.

The Category Interpretation of Directed Type Theory Conference’17, July 2017, Washington, DC, USA

Ahrens et al. [3] do situate their type theory within a gen-

eral model theory, namely comprehension bicategories. Their
theory is again 2-dimensional—directed reductions between

substitutions being a key desideratum of theirs. However,

this theory does not yet include a system for dealing with

variances nor a Hom-type former—the authors promise that

these features will be included in future work.

Finally, there are several directed type theories which

sidestep the need for an explicit modal typing system for

variances. This is essentially achieved by building an undi-

rected base theory which is adequate for axiomatizing the

directed interval, and then defining directed type theory in

terms of this directed interval. Riehl and Shulman [26] give

a directed simplicial type theory in this style, yielding a syn-

thetic theory of∞-categories. This is among the most mature

of directed type theories: it includes a statement of directed

univalence, has been extended to include modalities like the

opposite category [31], and has recently been implemented

in a computer proof assistant, Rzk [19]. Similarly, Weaver

and Licata [30] explore the directed analogue of cubical type
theory, and their theory has also been implemented in a com-

puter proof assistant [20]. In the present work, our focus

will be on developing a more elementary semantics which

models directed type theory in a more immediate way, and

thus won’t be focusing to closely on such theories. However,

it remains an interesting question to compare them to our

approach, and understand the extent to which these theories

achieve similar results. Also, since these theories (particu-

larly Riehl-Shulman) have already succeeded at synthetically

capturing higher categories, they provide valuable insight

for how to generalize our theory to higher dimensions.

1.1.2 Categories with Families and Generalized Algebraic
Theories Categories with families (CwFs) were introduced

as the semantics of type theory by Dybjer and Hofmann

[11, 15], they are a special case of a generalised algebraic the-

ory (GAT) [9]. CwFs are type-theoretic in nature: they sepa-

rate contexts and types as in the syntax of type theory, giving

rise to a more intuitive notion of semantics compared with

locally cartesian closed categories (LCCCs). Indeed, many in-

teresting models of type theory (such as the groupoid model)

are not LCCCs, but are CwFs. Another aspect is that CwF
come with explicit choices for all constructions, while LC-

CCs use universal properties, which only give constructions

up to isomorphism. However, Hofmann has showed that we

can construct a CwF for each LCCC via an adjoint splitting

construction [14], which has been shown to give rise to a

biequivalence [10].

There are a number of interesting alternatives to CwFs

such as split comprehension categories [17] or natural mod-

els [8] which have a more categorical as opposed to a type-

theoretic flavor. However, they can be shown to be equivalent

to CwFs.

In the context of CwFs, the so-called initiality conjecture,
i.e. that the syntax of type theory gives rise to the initial

CwF, has a simple solution when working in homotopy

type theory: the initial CwF can be presented as a Quotient-

Inductive-Inductive Type (QIIT) [5]. This definition can be

implemented in cubical Agda, using a technique pioneered

by Szumi [18]. However, this solution to the initiality prob-

lem presumes a rich type theory which itself needs to be

justified semantically.

1.2 Contribution
In the present work, we define a directed analogue of the

groupoid model. We dub this model ‘the category model’

because it replaces groupoids with categories, in two ways.

First, the actual definition of the model interprets contexts

as categories and types as families of categories, instead of

groupoids and families of groupoids. Second, the theory of

this model is a directed type theory, and thus provides a

language for synthetic category theory.

To use the categorization of the previous subsection, the

directed type theory given here (i) uses a modal typing disci-

pline; (ii) is deeply-polarized; and (iii) is 1-dimensional. Our

‘calculus of polarity’ will be somewhat like that of Licata–

Harper, in that it will allow for the negation of contexts

and ‘negative context extension’, and interpret these using

the ‘opposite category’ operation. However, while Licata and

Harper make context- and type-negation inextricable, our po-

larity calculus will treat them as separate, but closely-related

operations.
1

Our theory will be 1-dimensional in the sense of Licata–

Harper, because it will not include syntax for directed re-

ductions between parallel substitutions. Instead, we will use

the same Hom-type former as North, which has the key ad-

vantage of being iterable. However, while North uses a third

polarity, core types, to be able to type the identity morphism

and state directed path induction, a more versatile solution

is available in our semantics: restricting to neutral contexts.

What this means is that, while we still work in the category

model (where contexts are categories), we only define di-

rected path induction in those contexts which are groupoids.

In a neutral context, we obtain principles of directed path

induction (similar to North’s, modulo the aforementioned

change), which, as Riehl and Shulman observe, can be seen

as an instance of the Yoneda Lemma. We leave it for future

1
In the terminology of [7], Licata and Harper’s theory is abstractly polarized,
whereas ours will be concretely polarized, which is slightly stronger.

Conference’17, July 2017, Washington, DC, USA Thorsten Altenkirch and Jacob Neumann

work to develop some system of zoned contexts, which recon-

ciles the deep polarity of the category model with our need

to work in neutral contexts for directed path induction.

Finally, we begin to demonstrate that this theory is suitable

for synthetic category theory, by constructing the compo-

sition of directed paths. Unlike in analytic category theory,

where such constructions must be done explicitly by hand,

this construction is given automatically. In future work, we

will show that this same phenomenon repeats for the topics

of functoriality and naturality. Like the groupoid model, the

categorymodel does not satisfy (the appropriate analogue of)

UIP—otherwise all the Hom-types would be subsingletons,

and we would instead have a language for synthetic preorder
theory—but it does satisfy UIP “one level up”: directed paths

between directed paths are unique. This theory, therefore,
is a language for synthetic 1-category theory, not higher

category theory. But, just as Hofmann and Streicher’s work

prefigured, but did not achieve, homotopy type theory, we

view this as a promising first step towards a future directed
homotopy type theory.

1.3 Metatheory and Notation
Throughout, we use dependent type theory as our metathe-

ory, writing = to mean definitional or judgmental equality.

In a few cases, we use ≡ as our metatheoretic propositional

equality, which we take to satisfy UIP. To express dependent

functions, we’ll use Agda-like notation, including the use

of curly braces to indicate implicit arguments which can be

omitted. We do not distinguish between curried and uncur-

ried functions, writing arguments either separated by spaces

or commas, as convenient. To introduce infix functions, we

use underscores to indicate where arguments can be placed.

Wemake extensive use of basic category-theoretic notions.

For a category Γ, we write |Γ | to indicate the type of objects

of Γ, and, for 𝛾0, 𝛾1 : |Γ |, write Γ [𝛾0, 𝛾1] to denote the set of

Γ-morphisms whose domain is 𝛾0 and whose codomain is

𝛾1. We won’t pay attention to matters of size, i.e. whether a
given collection constitutes a “small set”.

We’ll make a number of category-theoretic definitions us-

ing snippets of pseudo-Agda. For instance, given categories

Δ, Γ, we might define the hom-sets of the category Cat, i.e.
the set of functors from Δ to Γ, as follows.

record Cat [∆, Γ] : Set where
field
obj : |∆| → |Γ|
map : {𝛿0 𝛿1 : |∆|} → ∆ [𝛿0, 𝛿1]→ Γ [obj 𝛿0, obj 𝛿1]
fid : {𝛿 : |∆|}→ map (id𝛿) ≡ idobj(𝛿)
fcomp : {𝛿0 𝛿1 𝛿2 : |∆|}{𝛿01 : ∆ [𝛿0, 𝛿1]}{𝛿12 : [𝛿1, 𝛿2

]}
→ map (𝛿12 ◦ 𝛿01) ≡ (map 𝛿12) ◦ (map 𝛿01)

We then implement some 𝜎 : Cat [Δ, Γ] by defining 𝜎 .obj,
𝜎 .map, etc. We’ll take the appropriate extensionality princi-

ples (e.g. to prove 𝜎 = 𝜎 ′
, show 𝜎 .obj 𝛿 = 𝜎 ′.obj 𝛿 for all 𝛿 ,

etc.) for granted. In the code snippets themselves, we’ll be

more pedantic about writing the components 𝜎 .obj, 𝜎 .map,
etc., but in the main body of the text we’ll just write 𝜎 for

both.

2 Polarity in the Category Model
As discussed above, the central impetus for the groupoid

model was to serve as a countermodel, exhibiting that the

rules of MLTT cannot possibly prove UIP. Of course, in or-

der to speak of countermodels, one must first have a notion

of “model”. What kind of thing is the groupoid model? The

notion of model utilized by Hofmann and Streicher is that of

categories with families.
2
One benefit of CwFs (in addition to

those listed in 1.1.2) is their modularity: the basic definition

of CwF includes exactly enough mathematical structure to

model the fundamental mechanisms of a type theory (con-

texts, substitution, types, terms, and variables), but no more.

Any constructs of type theory one wants to study (such as

dependent types and identity types) must be constructed

upon this structural foundation. If we had a specific syntax

of directed type theory already in mind, then we could pro-

ceed to encode all the desired type- and term-formers in

the CwF framework. But we don’t—instead we’re letting the

semantics take the lead, and determining our syntax from

there. So we’ll define the category model as a CwF, and then

explore what further type-theoretic constructs it interprets.

The four basic components of a CwF are the category of

contexts and substitutions, the presheaf of types, the presheaf

of terms, and the operation of context extension. These are

spelled out in pseudo-Agda in Fig. 1. Our presentation is

essentially the generalized algebraic theory of CwFs given

in [11, Section 2.2], though for brevity we’ve omitted sev-

eral specifications, e.g. that Con and Sub form a category,

the functoriality of the __[__] operators, that the morphism

pairing operation ⟨__, __⟩ is compatible with the composition

of substitutions, etc. One condition we will highlight is the

‘local representability’ condition tying together Ty, Tm, and

the ⊲ operation.

Sub Δ (Γ ⊲ A) �
∑︁

𝜎 : Sub Δ Γ

Tm(Δ,A[𝜎]) (Local-Rep)

This isomorphism is natural in both its arguments, i.e. view-

ing both sides as either presheaves in Δ or as covariant func-

tors in (Γ,A) : ∫ Ty. The right-to-left direction of this bijec-

tion is the pairing operation of Fig. 1, and the left-to-right

2
See [15, Section 3.2] for a comparison between CwFs and other notions of

model.

The Category Interpretation of Directed Type Theory Conference’17, July 2017, Washington, DC, USA

direction sends 𝜏 to (p ◦ 𝜏, v[p ◦ 𝜏]). Intuitively, we think of

contexts as lists of typed variable declarations, and context

extension is the operation appending one more variable onto

the end of the context. To define a substitution from Δ to Θ
is to “implement” the variables in Θ as appropriately-typed

terms, using the variables in Δ. The meaning of this is de-

fined recursively in Θ: if Θ is the empty context, •, then the

only such substitution is the terminal map !Δ : Sub Δ •. If Θ
is an extended context Γ ⊲A, then such a substitution must be

a pair ⟨𝜎, 𝑠⟩, as (Local-Rep) demands. As we’ll see, a variant

of this isomorphism will be the law connecting the deep and

shallow polarities of the category model together.

record CwF : Set where
field
−− Category of contexts
Con : Set
Sub : Con→ Con→ Set

−− The empty context (terminal object)
• : Con
! : (Γ : Con) → Sub Γ •

−− Presheaf of types
Ty : Con→ Set
__[__] : {Γ ∆ : Con}
→ Ty Γ → Sub ∆ Γ → Ty ∆

−− Presheaf of terms
Tm : (Γ : Con) → Ty Γ → Set
__[__] : {Γ ∆ : Con}{A : Ty Γ}
→ Tm(Γ,A) → (𝜎 : Sub ∆ Γ)→ Tm(∆, A[𝜎])

−− Context extension
__⊲__ : (Γ : Con) → Ty Γ → Con
⟨__,__⟩ : {Γ ∆ : Con}{A : Ty Γ}
→ (𝜎 : Sub ∆ Γ)→ Tm(∆, A[𝜎]) → Sub ∆ (Γ⊲A)

p : {Γ : Con}{A : Ty Γ}→ Sub (Γ⊲A) Γ

v : {Γ : Con}{A : Ty Γ}→ Tm(Γ⊲A, A[p])

Figure 1: The main data of a category with families

It turns out that the groupoidmodel only relies on its math-

ematical structures being groupoids when giving semantics

for identity types: for defining the basic CwF structure, it’s

never necessary to invert morphisms. Therefore, obtaining

the category model as a CwF is very easy: take the defini-

tion of the groupoid model, and replace every instance of

‘groupoid’ with ‘category’. This is done for Con, Sub, and

the object parts of Ty and Tm in Fig. 2: contexts are cate-

gories, substitutions are functors, and types are families of

categories indexed by the context. We could just as well de-

fine context extension at this point as well—its definition

also doesn’t need to invert any morphisms in Γ, or in any of

the categories A(𝛾),3 to define the category Γ ⊲ A. However,
it will be more elegant to do so in just a moment, when we

introduce the negative polarity.

Con = Cat

Sub Γ ∆ = Cat [Γ, ∆]

• : Cat
• = 1 −− the singleton category, with one object, ∗,

and only the identity morphism

−− A : Ty Γ means A : Γ → Cat
record Ty (Γ : Con) : Set where
field
obj : |Γ| → Cat
map : {𝛾0 𝛾1 : |Γ|} → Γ [𝛾0, 𝛾1]→ Cat [obj 𝛾0, obj
𝛾1]

fid : {𝛾 : |Γ|} → map (id𝛾) ≡ idobj(𝛾)
fcomp : {𝛾0 𝛾1 𝛾2 : |Γ|}{𝛾01 : Γ [𝛾0, 𝛾1]}{𝛾12 : Γ [𝛾1, 𝛾

2]}
→ map (𝛾12 ◦ 𝛾01) ≡ (map 𝛾12) ◦ (map 𝛾01)

record Tm (Γ : Con) (A : Ty Γ) : Set where
field
obj : (𝛾 : |Γ|) → |A.obj(𝛾)|
map : {𝛾0 𝛾1 : |Γ|}

→ (𝛾01 : Γ [𝛾0, 𝛾1])
→ (A.obj 𝛾1) [(A.map(𝛾01)).obj (obj 𝛾0),

obj(𝛾1)]
fid : {𝛾 : |Γ|} → map (id𝛾) ≡ idobj(𝛾)
fcomp : {𝛾0 𝛾1 𝛾2 : |Γ|}{𝛾01 : Γ [𝛾0, 𝛾1]}{𝛾12 : Γ [𝛾1, 𝛾

2]}
→ map (𝛾12 ◦ 𝛾01) ≡ (map 𝛾12) ◦ (A.map 𝛾12

).map (map 𝛾01)

Figure 2: The CwF structure of the category model
(besides context extension)

So what additional structure can we interpret in the cat-

egory model? Well, as discussed in Section 1, we will be

3
As with functors, we use the more pedantic notation of A.obj and A.map
in the pseudo-Agda snippets, but in the main text we’ll write both as just

A (e.g. writing A (𝛾) and A (𝛾01)), since it’ll always be clear from context

whether we mean the object or morphism part of A; likewise for terms.

Conference’17, July 2017, Washington, DC, USA Thorsten Altenkirch and Jacob Neumann

(__)op : Cat→ Cat
| Γ

op | = | Γ |
Γ
op [𝛾0 , 𝛾1] = Γ [𝛾1 , 𝛾0]

(__)op : {∆ Γ : Cat} → Cat [∆ , Γ] → Cat [∆
op , Γ

op]
Fop.obj 𝛿 = F.obj 𝛿
Fop.map 𝛿01 = F.map 𝛿01

Figure 3: The ‘opposite’ operation on categories

particularly interested in the ‘opposite category’ operation,

which is precisely defined in Fig. 3. Note that (__)op is not
just an operation on categories, but that it has an action on

functors as well, i.e. it is an endofunctor on Cat. Now, recall
that there’s two key ways we use Cat in the category model

(andGrpd in the groupoid model): Cat is the category of con-
texts, and a type A in context Γ is a functor from Γ into Cat.4

Therefore, the opposite category construction will manifest

in the theory as an operation on contexts (and substitutions),

as well as an operation on types. The former is what we

referred to as ‘deep’ polarity in Section 1, while the latter is

‘shallow’ polarity.

Proposition 2.1. The category model validates the follow-
ing rules.

Γ : Con
Γ− : Con (Con-Neg)

𝜎 : Sub Δ Γ
𝜎−

: Sub Δ− Γ− (Sub-Neg)

A : Ty Γ

A−
: Ty Γ (Ty-Neg)

Proof. Fig. 4 □

The interpretation of (Con-Neg) is just (__)op itself, whereas
(Ty-Neg) is post-composition with it:

Γ Cat Cat.A

A−

op

Now, let’s observe a few things about these negation opera-

tions. First, notice that negation has no effect on the empty

context: •− = •. In general, any groupoid will be isomor-

phic to its opposite—hence why this operation is not studied

on the groupoid model. Next, observe that negation is def-

initionally self-inverse: (Γ−)− = Γ, and (A−)− = A, and
(𝜎−)− = 𝜎 . Finally, we note that type negation distributes

over substitution: for any 𝜎 : Sub Δ Γ and A : Ty Γ,

(A[𝜎])− = A− [𝜎] .
4
This is a more succinct statement of the definition of Ty(Γ) given in Fig. 2.

−− Context negation
(__)− : Con → Con
Γ
− = Γ

op

(__)− : {∆ Γ : Con} → Sub ∆ Γ → Sub ∆
−

Γ
−

F− = Fop

−− Type negation
(__)− : {Γ : Con} → Ty Γ → Ty Γ

A− .obj 𝛾 = (A.obj 𝛾)op

A− .map 𝛾01 = (A.map 𝛾01)op

−− Positive extension
__⊲+__ : (Γ : Con) → Ty Γ → Cat
|Γ ⊲+ A| = Σ (𝛾 : |Γ|). |A.obj 𝛾 |
(Γ ⊲+ A) [(𝛾0, a0) , (𝛾1, a1)] =

Σ (𝛾01 : Γ [𝛾0, 𝛾1]). (A.obj 𝛾1) [(A.map 𝛾01).obj
a0, a1]

−− Negative extension
__⊲−__ : (Γ : Con) → Ty Γ

− → Cat
|Γ ⊲− A| = Σ (𝛾 : |Γ|). |A.obj 𝛾 |
(Γ ⊲− A) [(𝛾0, a0) , (𝛾1, a1)] =

Σ (𝛾01 : Γ [𝛾0, 𝛾1]). (A.obj 𝛾0) [a0, (A.map 𝛾01

).obj a1]

Figure 4: Polarized structure of the category model

This is because substitution is defined by pre-composition,

Δ Γ Cat Cat,𝜎

A[𝜎]

A

A−

op

and composition is associative.

Above, we did not yet mention the definition of context

extension in the category model. This is because there are

two context extension operations in the category model: one

positive, one negative.

Proposition 2.2. The category model validates the follow-
ing rules.

Γ : Con A : Ty Γ

Γ ⊲+ A : Con (Extend+)

Γ : Con A : Ty Γ−

Γ ⊲− A : Con (Extend−)

The Category Interpretation of Directed Type Theory Conference’17, July 2017, Washington, DC, USA

such that there are bijections, natural in Δ and in (Γ,A):

𝑆𝑢𝑏 Δ (Γ ⊲+ A) �
∑︁

𝜎 : Sub Δ Γ

Tm(Δ, 𝐴[𝜎]) (Local-Rep
+
)

𝑆𝑢𝑏 Δ (Γ ⊲− A) �
∑︁

𝜎 : Sub Δ Γ

Tm(Δ−, 𝐴[𝜎−]−) .

(Local-Rep
−
)

The semantics for these extension operators are given in

Fig. 4, and the required bijections are easy to verify. Hof-

mann and Streicher define context extension in the groupoid

model using the same definition as (Local-Rep
+
), but, since

groupoids are self-dual, (Local-Rep
−
) would be equivalent.

This construction is well-known: as Hofmann and Streicher

note, the definition of Γ ⊲+ A is “the total category of the

co-fibration obtained by applying the Grothendieck con-

struction to A” [16, Section 4.5]. The definition of Γ ⊲− A like-

wise utilizes the Grothendieck construction for contravariant

functors—note in the premises of (Local-Rep
−
) thatA : Ty Γ− ,

i.e. A : Γop → Cat.
In the present work, we will not explore in detail the the-

ory of deep polarity: in the next section, we will need to re-

strict our attention to neutral contexts, i.e. groupoid contexts.

This is not the same as reverting to the groupoid model—

as we’ll see, keeping the shallow polarity of A versus A−

makes it possible to define asymmetric Hom-types, instead

of the symmetric identity types of the groupoid model—but,

as mentioned, the deep polarity is trivial when applied to

groupoid contexts. Our suspicion is that some system of

zoned contexts or modal type theory which provides syntax

for working with both polarized and neutral contexts will

be the ultimate theory of the category model. But that will

have to be left for future work.

3 Hom Types and Directed Path Induction
We now turn our attention to the directed analogue to iden-

tity types: Hom-types. Our hypothesis is that the category
model will accommodate an interpretation of Hom-types,

analogous to the groupoid model’s interpretation of iden-

tity types. Recall that our goal is to do synthetic category

theory—terms of these Hom-types ought to behave like the

morphisms of a category (reflt as the identity morphism on

the term/object t, and a composition operation definable

by directed path induction), but not necessarily a groupoid
(symmetry ought not to hold in general: having a term of

type Hom(t,t') shouldn’t automatically give you one of type

Hom(t',t)). This hypothesis will prove correct, but it will take
careful work to actually perform the desired constructions.

In the groupoid model, identity types between terms of

type A are interpreted using the hom-sets of the groupoids

interpreting A. That is, A : Ty Γ means that A is a func-

tor from the groupoid Γ to the category of groupoids, i.e.

A(𝛾) is a groupoid for each object 𝛾 of Γ. To give seman-

tics for the type Id(t,t'), we must also assign a groupoid to

each 𝛾 in a functorial way. The groupoid that is used is the

discrete groupoid on the set A(𝛾) [t(𝛾), t'(𝛾)], that is, the
groupoid whose only morphisms are identity morphisms.

5

So far, this can be copied exactly to the category model: the

object part of Hom(t,t') at 𝛾 is the discrete category on the

hom-set A(𝛾) [t(𝛾), t'(𝛾)]. However, it is in the morphism
part that we actually use the assumption that A(𝛾) is a

groupoid: given 𝛾01 : Γ [𝛾0, 𝛾1], we have to give a way to turn
A(𝛾0)-morphisms (t 𝛾0) (t' 𝛾0) into A(𝛾1)-morphisms

(t 𝛾1) (t' 𝛾1). Given x : A(𝛾0) [t(𝛾0), t'(𝛾0)], we have
this situation:

A 𝛾01 (t 𝛾0) A 𝛾01 (t' 𝛾0)

t 𝛾1 t' 𝛾1.

t(𝛾01)

A 𝛾01 x

t'(𝛾01)

So, in the groupoidmodel, it’s simple to fill in the bottom: just

invert the arrow on the left, and compose the three arrows.

In the category model, we can’t invert arrows. But what we

can do is have t be a term of type A−
, so the left arrow goes

up and the construction carries through. This gives us the

following rule for Hom-type formation, the same one given

in [24, Section 2].

Proposition 3.1. The category model validates the follow-
ing rule.

t : Tm(Γ,A−) t' : Tm(Γ,A)
Hom(t,t') : Ty Γ (Hom-Form)

Proof. Fig. 5 □

Hom : Tm(Γ, A−)→ Tm(Γ, A) → Ty Γ

(Hom(t,t')).obj 𝛾 =
(A.obj 𝛾) [t.obj 𝛾 , t'.obj 𝛾] −− Discrete category

(Hom(t,t')).map 𝛾01 =
_ x→ (t'.map 𝛾01) ◦ ((A.map 𝛾01).map x) ◦ (t.map 𝛾

01)

Figure 5: Semantics of Hom types in the Category
Model

5
To be fully precise, we’ll express this by saying that the hom-set between

objects 𝑋 and 𝑌 is our meta-theoretic identity type 𝑋 ≡ 𝑌 . So the hom-set

between 𝑋 and itself, 𝑋 ≡ 𝑋 , will be a singleton (since our meta-theoretic

identity type satisfies UIP), whose single element must be the identity

morphism on 𝑋 . For distinct 𝑋 and 𝑌 , the identity type 𝑋 ≡ 𝑌 will be

uninhabited. Thus, “the only morphisms are identity morphisms”.

Conference’17, July 2017, Washington, DC, USA Thorsten Altenkirch and Jacob Neumann

This also matches with the goal of synthetic category

theory: in category theory, Hom-sets are contravariant in
their first argument and covariant in their second. So asking

for t to be a term of A−
and for t' to be a term of A is the

correct assignment of variances.

At this stage, we can remark that the category model

refutes the directed analogue of UIP. We could use the same

counterexample as Hofmann-Streicher [16, Theorem 5.1]

taking the group Z2 as a single-object groupoid. Any given

groupoid is a closed type in the empty context of the groupoid

model (since functors 1 → Grpd are the same thing as

groupoids), and any closed term of such a type is just an

object of that groupoid. So therefore the closed type Z2 has

a single term, call it s, but exactly two morphisms in Z2 [s, s]
(corresponding to 0 and 1). Thus the identity type Id(s,s)
has exactly two terms, violating UIP. But, since we’re in the

category model, let’s pick a category that’s not a groupoid.
The simplest example is the category with two objects, p and

s, and two distinct parallel morphisms from p to s:

p s

which, by the same logic, dictates thatHom(p,s)will not have
a unique element. So we’ve refuted directed UIP. However,

this example also serves another purpose for us: showing that

symmetry cannot be proved in the category model. Below,

we will give rules for directed path induction, our theoretical

tool for proving statements about Hom-types. We can rest

assured that these rules do not allow us to invert a directed

path inHom(t,t') to get a directed path in the other direction,

Hom(t',t). Because, if they did, then we could apply that to

either morphism from p to s to get a morphism from s to p, of
which there are none. So our Hom-types are genuinely asym-

metric in general; we didn’t accidentally reinvent symmetric

identity types.

To define directed path induction, we’ll first need to con-

struct refl. This will prove more challenging. Naïvely, we

want reflt to be a term of type Hom(t,t), reflecting the fact

that identity morphisms in a category have the same domain

and codomain. But it is seemingly impossible to form the

type Hom(t,t), because (Hom-Form) would say that t must

be a term of type A and a term of typeA−
. Can this be? None

of the existing rules tell us how a term can be of type A and

A−
, nor do they furnish us a way to convert terms of type A

into terms of type A−
or vice-versa.

There are two solutions to this impasse: neutralizing the

shallow polarity, or neutralizing the deep polarity. The for-

mer solution, which is the one adopted by North, utilizes a

further extension of our theory, core types. Recall from above

that the opposite category endofunctor Cat → Cat gives
semantics for both context- and type-negation operations

(__)− . We can do the same again, with a different endofunc-

tor: the ‘core groupoid’ construction. The core operation

sends each category Γ to its ‘core’, core(Γ), the subcategory
with all the same objects, but only the Γ-isomorphisms as
morphisms.

6
We could view this as a ‘deep’ operation on con-

texts, (__)0 : Con → Con, but we’ll again be more interested

in the operation on types:

(__)0 : {Γ : Con}→ Ty Γ → Ty Γ

A0.obj 𝛾 = core(A.obj 𝛾)
A0.map 𝛾01 = core(A.map 𝛾01)

This will fix the refl issue. Consider a term t : Tm(Γ,A0).
Then, for some 𝛾1 : |Γ |, A0 (𝛾1) is a groupoid. Since it’s a

groupoid, i.e. we can take the inverse of A0 (𝛾1)-morphisms

such as 𝑡 (𝛾01), it’s possible to make sense of Hom(t,t) the
same way we made sense of Id(t,t) in the groupoid model.

More verbosely, we could say there are ‘coercion’ operations

+ : {Γ : Con}{A : Ty Γ}→ Tm(Γ,A0) → Tm(Γ,A)
− : {Γ : Con}{A : Ty Γ}→ Tm(Γ,A0) → Tm(Γ,A−)

where the object parts of t, +t, and −t all coincide, and the

morphism parts of +t, and −t are the morphism part of t and
its inverse, respectively. Then we could state the introduction

rule as follows.

t : Tm(Γ,A0)
reflt : Tm(Γ,Hom(−t,+t))

While simple and effective at incorporating refl into the

framework of polarized type theory, this fix suffers from a

significant drawback. Our ultimate aim is to state a directed

analogue of path induction, to allow us to prove a claim

about arbitrary directed paths just by proving it about refl.
But, if this is the introduction rule for refl, then it seems we

can only state path induction based at terms of type A0
; we

don’t have any tools for reasoning about arbitrary directed

paths.

In the present work, we’ll take a different approach: neu-

tralizing the deep polarity and maintaining the shallow po-

larity. To see what this means, consider the case where Γ is

the empty context. In the empty context, there’s no trouble

typing refl. Since the only morphism of the empty context

is the identity morphism, we don’t have to worry about the

morphism parts of closed types and terms. A closed type A
is interpreted as a category; terms of A and terms of A−

are

the same thing—objects of A; and Hom(t,t) makes perfect

sense—it’s the setA [t, t], as a discrete category. In the empty

context, path induction will allow us to prove things about

arbitrary directed paths.

Here’s the key point: we can do everything necessary

for directed path induction, not just in the empty context,

6
The morphism part of core as a functor Cat → Cat , takes a functor

𝐹 : Cat [Δ, Γ] and restricts its domain to the subcategory core(Δ) . Since 𝐹
must preserve isomorphisms by the functor laws, its image is in the core of

Γ, hence we have core(𝐹) : Cat [core(Δ), core(Γ)].

The Category Interpretation of Directed Type Theory Conference’17, July 2017, Washington, DC, USA

but in any groupoid context. Suppose Γ is a groupoid, and

A : Ty Γ. Given a “positive term” of type A, that is, some

t : Tm(Γ, 𝐴), recall that the morphism part of t applied to

some 𝛾01 : Γ [𝛾0, 𝛾1] is of the form

t 𝛾01 : (A 𝛾1) [A 𝛾01 (t 𝛾0), t(𝛾1)].

If we want to use t negatively, that is, in place of a term of

typeA−
—aswemust do forHom(t,t) to be well-formed—then

we need a way to turn this into something of the form

(A 𝛾1) [t(𝛾1), A 𝛾01 (t 𝛾0)]

which is the type of morphism parts of terms of A−
, applied

to 𝛾01. In the groupoid model (and in the above-mentioned

solution using core types), we did this by assuming A(𝛾1) is
a groupoid (or using the fact that A0 (𝛾1) is a groupoid), and
thereby taking the inverse of t(𝛾01) to get the desired A(𝛾1)-
morphism. But instead we’re assuming that Γ is a groupoid.

This will still give us a way to coerce terms ofA into terms of

A−
: observe that we can instead invert 𝛾01 and apply t.map:

t(𝛾01

−1) : (A 𝛾0) [A 𝛾01

−1 (t 𝛾1), t(𝛾0)].

Applying A(𝛾01), which is a functor from A(𝛾0) to A(𝛾1),
takes us back into A(𝛾1):

A 𝛾01 (t(𝛾01

−1))
: (A 𝛾1) [A 𝛾01 (A 𝛾01

−1 (t 𝛾1)), A 𝛾01 (t(𝛾0))].

Cleaning up using the functoriality of A, this turns out to
have exactly the type we want. So we’ve successfully found

a way to coerce terms of A into terms of type A−
. We can do

the opposite, as well, and coerce terms of A−
to A.

Proposition 3.2. The category model validates the follow-
ing rules.

Γ : NeutCon t' : Tm(Γ,A)
−t' : Tm(Γ,A−) (Coe

−
)

Γ : NeutCon t : Tm(Γ,A−)
+t : Tm(Γ,A) (Coe

+
)

Proof. Fig. 6 □

− : {Γ : NeutCon}{A : Ty Γ}→ Tm(Γ,A) → Tm(Γ,A−)
(−t').obj 𝛾 = t'.obj 𝛾
(−t').map 𝛾01 = (A.map 𝛾01).map (t'.map(𝛾01

−1))
+ : {Γ : NeutCon}{A : Ty Γ}→ Tm(Γ,A−) → Tm(Γ,A)
(+t).obj 𝛾 = t.obj 𝛾
(+t).map 𝛾01 = (A.map 𝛾01).map (t.map(𝛾01

−1))

Figure 6: Semantics of coercion in neutral contexts

This makes it possible to define refl: for a given term

t : Tm(Γ,A−), we can say reflt : Tm(Γ,Hom(t,+t)), and for

t' : Tm(Γ,A), we can say reflt' : Tm(Γ,Hom(−t',t')).

Proposition 3.3. The category model validates the follow-
ing rules.

Γ : NeutCon t : Tm(Γ,A−)
reflt : Tm(Γ,Hom(t,+t)) (Hom-Intro

−
)

Γ : NeutCon t' : Tm(Γ,A)
reflt' : Tm(Γ,Hom(−t',t')) (Hom-Intro

+
)

Proof. Fig. 7 □

−− refl for terms of A−

refl : {Γ : NeutCon}{A : Ty Γ}
→ (t : Tm(Γ,A−))→ Tm(Γ,Hom(t,+t))

reflt.obj 𝛾 = idt(𝛾)

reflt.map 𝛾01 :
(+t.map 𝛾01) ◦ ((A.map 𝛾01).map id) ◦ (t.map 𝛾01) ≡
id

−− follows from functoriality of A, the defn of +t, and
the groupoid axioms for Γ

−− refl for terms of A
refl : {Γ : NeutCon}{A : Ty Γ}

→ (t' : Tm(Γ,A))→ Tm(Γ,Hom(−t',t'))
reflt’.obj 𝛾 = idt’(𝛾)

reflt’.map 𝛾01 :
(t'.map 𝛾01) ◦ ((A.map 𝛾01).map id) ◦ (−t'.map 𝛾01)
≡ id

−− follows from functoriality of A, the defn of −t',
and the groupoid axioms for Γ

Figure 7: Semantics of refl in neutral contexts

Now on to directed path induction. As we’ve seen, directed

paths in a type A are introduced by two rules, (Hom-Intro
−
)

and (Hom-Intro
+
)—one forA and one forA−

. These are essen-

tially the same, except they’re oppositely polarized. Fittingly,

directed paths are eliminated by one of two twin J-rules.

Conference’17, July 2017, Washington, DC, USA Thorsten Altenkirch and Jacob Neumann

Proposition 3.4. The category model validates the follow-
ing rules.

t : Tm(Γ,A−)
M : Ty(Γ ⊲+ (z: A) ⊲+ Hom(t,z))

m : Tm(Γ,M[+t, reflt])

t' : Tm(Γ,A)
p : Tm(Γ,Hom(t,t'))

J+M m t' p : Tm(Γ,M[t',p])
(Hom-Elim

+
)

t' : Tm(Γ,A)
M : Ty((Γ ⊲+ (z: A−) ⊲+ Hom(z,t'))−)

m : Tm(Γ,M[−t', refl t'])

t : Tm(Γ,A−)
p : Tm(Γ,Hom(t,t'))

J−M m t p : Tm(Γ,M[t,p])
(Hom-Elim

−
)

Proof. Fig. 8 □

The precise statement of directed J given in Fig. 8 are

somewhat impenetrable, but somewhat easier to understand

in the special case of the empty context.
7
So then A is a

category and t is an object of A. Then observe that M is a

Cat-valued functor on the coslice category under t

t/A → Cat

and m is an object of the categoryM(t, idt). So then, for any

arbitrary object t' and morphism p : A [t, t'], we need to get

an object of M(t', p). But recall that (t, idt) is initial in the

category t/A: the morphism p is a morphism from (t, idt) to
(t', p):

t

t t'

id p

p

soM(p) is a functor fromM(t, idt) toM(t', p), which we can

apply to m. Conversely, for J− , we instead have

M : (A/t')op → Cat.

We need M to be contravariant here, since identity mor-

phisms are terminal in slice categories: p is a A/t'-morphism

from (t, p) to (t', idt’), and soM p m again gives us what we

want.

To see the utility of these rules, let’s define composition

of directed paths. Suppose we have terms t,t' of A−
, a term

t'' of type A, and

p : Tm(Γ,Hom(t,+t')) and q : Tm(Γ,Hom(t',t'')).
Then (Hom-Elim

+
) says: in order to define q◦p : Tm(Γ,Hom(t,t'')),

it is sufficient to define reflt'◦p : Tm(Γ,Hom(t,+t')). Of course,
we define this as p. Thus, we have a notion of composition

for our directed paths. An interested reader can confirm that

this definition gives us the same semantics as if we defined

7
This is also how Hofmann and Streicher explain the semantics of path

induction in the groupoid model [16, Section 4.10], which is the same con-

struction we’re doing here.

composition as a primitive, and interpreted it using the com-

position of the interpreting morphisms in the category. In

future work, we will develop this into a more fully-featured

synthetic category theory.

4 Conclusion and Future Directions
In this paper, we have defined the category model, a directed

analogue of the groupoid model, and shown that it has both

a calculus of deep polarity, and, in neutral contexts, adequate

facilities for directed path induction and synthetic 1-category

theory.

Much remains to be explored about this model. As we

have already noted, further work is required to allow for

better interplay between neutral and polarized contexts. We

suspect our type theory can be presented as an instance of

multi-modal type theory [12], with one modality which cor-

responding to the core functor from categories to groupoids

(the right adjoint to the forgetful functor).

The work presented in this paper is only a first step to-

wards a better understanding of directed type theory, which

has many exciting applications. One such application of di-

rected type theory is to unify the two principles that reflect

that types are opaque: univalence and parametricity [27].

The appropriate notion of directed univalence (which needs

to be formally articulated in our model) says that the di-

rected paths of the universe are functions, and entails normal,

unidrected univalence by considering the core of the universe

of sets. This principle—combined with the power of directed

path induction—ought to entail various “free theorems” (in

the sense of [29]), in particular that any polymorphic func-

tion is natural. We leave the detailed investigation of this

idea to further work.

Another interesting line of thought is to revisit the theory

of containers [1] in the directed setting where they corre-

spond to categorified container [13]. We hope that this gives

rise to a concise notion of QW types (W-types for QITs)

and in a higher dimensional setting HW types (W-types for

HITs).

Finally, we ultimately want to move to an untruncated set-

ting, replacing categories with higher categories. We believe

that should be possible along the lines of Higher Observa-

tional Type Theory (HOTT)[4, 6]. Indeed, we hope that this

connection would contribute to our understanding of HOTT.

References
[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers:

Constructing strictly positive types. Theoretical Computer Science,
342(1):3–27, 2005.

[2] Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univa-

lent categories and the rezk completion. Mathematical Structures in
Computer Science, 25(5):1010–1039, 2015.

The Category Interpretation of Directed Type Theory Conference’17, July 2017, Washington, DC, USA

J+M m t' p : Tm(Γ, M[t', p])
(J+M m t' p).obj 𝛾 : | M.obj(𝛾 , t'.obj 𝛾 , p.obj 𝛾) |
(J+M m t' p).obj 𝛾 = M.obj (id𝛾 , p.obj 𝛾) (m.obj 𝛾)

(J+M m t' p).map 𝛾01 :
(M.obj (𝛾1, t'.obj 𝛾1, p.obj 𝛾1)) [M.map (𝛾01, t'.map 𝛾01) ((J+M m t' p).obj 𝛾0), (J+M m t' p).obj 𝛾1]

(J+M m t' p).map 𝛾01 = (M.map (id𝛾 , p.obj 𝛾)).map (m.map 𝛾01)

J−M m t p : Tm(Γ, M[t, p])
(J−M m t p).obj 𝛾 : | M.obj(𝛾 , t.obj 𝛾 , p.obj 𝛾) |
(J+M m t p).obj 𝛾 = M.obj (id𝛾 , p.obj 𝛾) (m.obj 𝛾)

(J−M m t p).map 𝛾01 :
(M.obj (𝛾1, t.obj 𝛾1, p.obj 𝛾1)) [M.map (𝛾01, t.map 𝛾01) ((J−M m t p).obj 𝛾0), (J−M m t p).obj 𝛾1]

(J−M m t p).map 𝛾01 = (M.map (id𝛾 , p.obj 𝛾)).map (m.map 𝛾01)

Figure 8: Semantics of directed path induction in neutral contexts

[3] Benedikt Ahrens, Paige Randall North, and Niels van der Weide. Bicat-

egorical type theory: semantics and syntax. Mathematical Structures
in Computer Science, 33(10), oct 2023.

[4] Thorsten Altenkirch, Yorgo Chamoun, Ambrus Kaposi, and Michael

Shulman. Internal parametricity, without an interval. Proceedings of
the ACM on Programming Languages, 8(POPL):2340–2369, 2024.

[5] Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory

using quotient inductive types. ACM SIGPLAN Notices, 51(1):18–29,
2016.

[6] Thorsten Altenkirch, Ambrus Kaposi, and Michael Shulman. Towards

higher observational type theory, 2022. 28th International Conference

on Types for Proofs and Programs (TYPES 2022).

[7] Thorsten Altenkirch and Jacob Neumann. Presheaf models of polarized

higher-order abstract syntax, 2023. Second International Conference

on Homotopy Type Theory (HoTT 2023).

[8] Steve Awodey. Natural models of homotopy type theory. Mathematical
Structures in Computer Science, 28(2):241–286, 2018.

[9] John Cartmell. Generalised algebraic theories and contextual cate-

gories. Annals of pure and applied logic, 32:209–243, 1986.
[10] Pierre Clairambault and Peter Dybjer. The biequivalence of locally

cartesian closed categories and martin-löf type theories. Mathematical
Structures in Computer Science, 24(6):e240606, 2014.

[11] Peter Dybjer. Internal type theory. In International Workshop on Types
for Proofs and Programs, pages 120–134. Springer, 1995.

[12] Daniel Gratzer, GA Kavvos, Andreas Nuyts, and Lars Birkedal. Mul-

timodal dependent type theory. In Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 492–506,
2020.

[13] Håkon Robbestad Gylterud. Symmetric containers. Master’s thesis,

2011.

[14] Martin Hofmann. On the interpretation of type theory in locally

cartesian closed categories. In International Workshop on Computer
Science Logic, pages 427–441. Springer, 1994.

[15] Martin Hofmann. Syntax and semantics of dependent types. In Ex-
tensional Constructs in Intensional Type Theory, pages 13–54. Springer,
1997.

[16] Martin Hofmann and Thomas Streicher. The groupoid interpretation

of type theory. Twenty-five years of constructive type theory (Venice,
1995), 36:83–111, 1995.

[17] Bart Jacobs. Comprehension categories and the semantics of type

dependency. Theoretical Computer Science, 107(2):169–207, 1993.
[18] Ambrus Kaposi. "Message to the Agda mailing list". "https://lists.

chalmers.se/pipermail/agda/2019/011176.html", 2019.

[19] Nikolai Kudasov, Emily Riehl, and Jonathan Weinberger. Formalizing

the ∞-categorical yoneda lemma, 2023.

[20] Daniel Licata and Matthew Weaver. Theory and implmentation of

bicubical directed type theory, 2023. Second International Conference

on Homotopy Type Theory (HoTT 2023).

[21] Daniel R Licata and Robert Harper. 2-dimensional directed dependent

type theory. 2011.

[22] Per Martin-Löf. An intuitionistic theory of types: Predicative part.

In H.E. Rose and J.C. Shepherdson, editors, Logic Colloquium ’73, vol-
ume 80 of Studies in Logic and the Foundations of Mathematics, pages
73–118. Elsevier, 1975.

[23] Per Martin-Löf. Constructive mathematics and computer program-

ming. In L. Jonathan Cohen, Jerzy Łoś, Helmut Pfeiffer, and Klaus-Peter

Podewski, editors, Logic, Methodology and Philosophy of Science VI,
volume 104 of Studies in Logic and the Foundations of Mathematics,
pages 153–175. Elsevier, 1982.

[24] Paige Randall North. Towards a directed homotopy type theory. Elec-
tronic Notes in Theoretical Computer Science, 347:223–239, 2019.

[25] Andreas Nuyts. Towards a directed homotopy type theory based on 4

kinds of variance. Mém. de mast. Katholieke Universiteit Leuven, 2015.
[26] Emily Riehl and Michael Shulman. A type theory for synthetic ∞-

categories. arXiv preprint arXiv:1705.07442, 2017.
[27] Filipo Sestini and Thorsten Altenkirch. Naturality for free!—the cate-

gory interpretation of directed type theory, 2019. The International

Conference on Homotopy Type Theory (HoTT 2019).

[28] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. https://homotopytypetheory.org/book,

Institute for Advanced Study, 2013.

[29] Philip Wadler. Theorems for free! In Proceedings of the fourth interna-
tional conference on Functional programming languages and computer

https://lists.chalmers.se/pipermail/agda/2019/011176.html
https://lists.chalmers.se/pipermail/agda/2019/011176.html
https://homotopytypetheory.org/book

Conference’17, July 2017, Washington, DC, USA Thorsten Altenkirch and Jacob Neumann

architecture, pages 347–359, 1989.
[30] Matthew Z. Weaver and Daniel R. Licata. A constructive model of

directed univalence in bicubical sets. In Proceedings of the 35th An-
nual ACM/IEEE Symposium on Logic in Computer Science, LICS ’20,

page 915–928, New York, NY, USA, 2020. Association for Computing

Machinery.

[31] Jonathan Weinberger and Ulrik Buchholtz. Type-theoretic modalities

for synthetic (∞, 1)-categories, 2019. International Conference on

Homotopy Type Theory (HoTT 2019).

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contribution
	1.3 Metatheory and Notation

	2 Polarity in the Category Model
	3 Hom Types and Directed Path Induction
	4 Conclusion and Future Directions
	References

