Semantics of Nondeterministic Construction

Master's Thesis Defense Jacob Neumann 14 August 2020

 \blacksquare

つへへ

Philosophy $\mathcal{L}_{\mathcal{A}}$

- Give mathematical models of a dynamic-epistemic situation
- Formalize epistemic intuitions about coin flipping

Mathematics

- Specify framework for studying extensions to dynamic topological logic
- Replicate aspects of relational PDL
- **Study various interesting mathematical objects**

 OQ

■ Section 0: The Epistemic Interpretation How dynamic topological logic models agents in situations

■ Section 1: The Logic of Coin Flipping How to extend these models to interpret coin flipping

■ Section 2: The Logic of Program Construction How to study (and generalize) the coin-flipping augmentation

 Ω

Section 0

The Epistemic Interpretation

Jacob Neumann Semantics of Nondeterministic Construction 14 August 2020 4/34

 \leftarrow

 $E|E \cap Q$

Agents who can

- Perform actions (or execute programs)
- Know (some) true statements about their situation (including $\overline{}$ statements about the results of their actions).

We wish to understand the *logic* of such agents

 QQQ

A $Σ$ -DTM $mathfrak{M}$ is a kind of mathematical object. It includes:

- A set, denoted $|\mathfrak{M}|$, of states
- \blacksquare The set Σ, its *program set*

DTMs serve as mathematical models of an agent's possibilities in a situation.

 OQ

 $\mathcal{L}_{\Box \bigcirc}(\Sigma)$ is given by:

$$
\varphi, \psi ::= p | \varphi \wedge \psi | \neg \varphi | \bigcirc \sigma \varphi | \Box \varphi \qquad (p \in \Phi, \sigma \in \Sigma)
$$

The judgment

$$
(\mathfrak{M},\mathsf{x})\models\varphi
$$

is pronounced " (\mathfrak{M}, x) validates φ " or "x is a φ -world". The conditions for determining whether or not $(\mathfrak{M}, x) \models \varphi$ are defined by recursion on the structure of φ .

 $E|E \cap Q$

We think of our agent as being "at" a world x of a Σ -DTM \mathfrak{M} . The formulas validated by (\mathfrak{M}, x) express the properties of her interaction with that situation.

 \Box _{$\sigma \varphi$} – "after σ , φ "

In the present state of the situation, the agent is able to perform the action denoted by σ , and doing so will result in a state where φ is true.

 Ω

K ロ > K 何 > K ヨ > K ヨ > (ヨ → 이익⊙)

We think of our agent as being "at" a world x of a Σ -DTM \mathfrak{M} . The formulas validated by (\mathfrak{M}, x) express features of her experience of that situation.

■ $\Box \varphi$ – " φ is knowably true"

In the present state of the situation, φ is true and, moreover, there is some observation the agent could make which would allow her to know that φ

 \blacksquare $\Diamond \varphi$ – "the agent cannot rule out the possibility of φ " In the present state of the situation, there is no observation the agent could make which would allow her to know that φ is not the case

 $F = \Omega$

In the text of the thesis, I explain in (much) greater detail why this reading is warranted.

ADTL Axioms and Inferences

 $E|E \cap Q \cap Q$

Epistemic Opacity

 $\Diamond \bigcirc_{\sigma} \varphi \land \Diamond \bigcirc_{\sigma} \neg \varphi$

It is the case that "after \overline{a} σ , φ ", but, as far as the agent can know, it could be the case that "after σ , $\neg \varphi$ ".

 OQ

Section 1

The Logic of Coin Flipping

Jacob Neumann Semantics of Nondeterministic Construction 14 August 2020 13 / 34

 \leftarrow \Box \rightarrow

Ξ

 $E|E \cap Q$

- We study agents who use a coin flip to decide between two possible actions
- σ_0 or σ_1 : "flip a coin. If heads, do σ_0 . If tails, do σ_1 "
- Obvious facts about how coin flipping should work:
	- \bullet σ_0 or σ_1 should ultimately be either σ_0 or σ_1 (Honesty)
	- The agent should not be able to determine which one it will be, prior to flipping the coin (Epistemic Opacity)

ミミ のなね

We want to "augment" DTMs to interpret this.

$$
\Pi^{or} = \Pi \cup \{ \pi_0 \text{ or } \pi_1 \; : \; \pi_0, \pi_1 \in \Pi \} \, .
$$

We specify a *transformation* sending a Π-DTM \mathfrak{M} to a Π^{or}-DTM \mathfrak{M}^{OR} . \mathbb{R} M and \mathfrak{M} ^{OR} should interpret Π programs the same way or-programs should match our intuitions about coin flipping

Note: this does not allow for "nesting", e.g. π_0 or (π_1 or π_2)

.

 $\mathcal{A} \boxdot \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B} \oplus \mathcal{B} \oplus \mathcal{A} \oplus \mathcal{B}$

.

 σ_0 or σ_1

 σ_0 or σ_1

 σ_0 or σ_1

Essential features of OR-augmented models:

- Primitive equivalence: Π-actions (those not requiring the coin) behave the same, regardless of whether the agent has a coin or not
- **Honesty:** σ_0 or σ_1 is either σ_0 or σ_1 .
- **Epistemic Opacity: The agent cannot rule out the possibility that** the coin will come up heads, or that it will come up tails.
- Regularity: The outcome of the flip does not depend on what the flip is being used to decide between.
- **Persistence:** The agent may only flip the coin once $-$ repeated flips will give the same result.

 $F = \Omega$

Section 2

The Logic of Program Construction

Jacob Neumann Semantics of Nondeterministic Construction 14 August 2020 22 / 34

 \leftarrow \Box \rightarrow

 $E|E \cap Q$

If c is some *n*-ary function symbol, Π^c is the least set containing Π closed under c: i.e. those σ given by

$$
\sigma ::= \pi \mid c(\sigma_1,\ldots,\sigma_n)
$$

where π ranges over Π .

Unless noted (as we did with or), there is no restriction on syntactic "nesting".

 $E|E \cap Q \cap Q$

Defn. 2.1 A program constructor C interpreting c consists of a rule assigning to each Π-DTM $\mathfrak{M}% ^{2}$ a $\Pi ^{c}$ -DTM $\mathfrak{M}^{C},$ which is structured as pictured above.

Some examples:

- OR
- U ω and U ∞
- \blacksquare OR1, OR2, OR3, ...
- SKIP
- SEQ
- \blacksquare STARω, STAR∞, ...
- Test programs, loops, conditionals, more elaborate constructions?

ミミ のなね

Things I didn't get to talk about (today)

- More epistemological development
- Proof theory
- Propositional dynamic logic
- More details about various program constructors
- Bisimulations
- Refined Frame Theory and Characterization
- Details/proofs of the major results:
	- Prop. 1.5 New proof of $PDL₀$ soundness & completeness $\mathcal{L}_{\mathcal{A}}$
	- Thms. 3.6 & 3.7 PDL₀ + (U) soundness & completeness w.r.t. U ω -augmented (or U ∞ -augmented) models
	- Thm. 4.3 Undefinability of the class of OR-augmented DTMs
		- Thm. 7.1 Characterization of OR

 $F = - \cap \Omega$

Thank you!

 $\begin{array}{ccc} \leftarrow & \leftarrow & \rightarrow & \rightarrow \end{array}$

4 伊 ト 4

 $\mathbb{B} \rightarrow \mathbb{R} \oplus \mathbb{R}$

 $E=E \otimes Q$

 \leftarrow \Box \rightarrow

 \prec \mathbb{R}^+ E \rightarrow \prec $E|E \cap Q \cap Q$

 \equiv