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Abstract

Propositional Dynamic Logic (PDL) provides a formal language for the logic of (non)deterministic pro-
grams, and axiomatizations of PDL with respect to a standard class of relational models have been known
for several decades. However, it has recently been shown in [5] that a basic fragment of PDL can also be
modeled by a richer class of models: dynamic topological models. In addition to interpreting the language
of PDL, dynamic topological models give semantics for modalities which admit an epistemic interpretation:
we can read the formulas of this logic as formally expressing the dynamic-epistemic properties of agents
performing actions in situations. We further this project by developing a theory of “program constructors”,
which provide a means to (deterministically or nondeterministically) combine simple actions into more elab-
orate ones. In addition to presenting a fascinating theory in its own right, the theory of program constructors
allows us to formally model a wide array of phenomena within the dynamic topological framework, in par-
ticular nondeterministic binary choices (which we epistemically interpret as “coin-flipping”). In order to
make sense of such objects, we undertake an extensive development of the mathematical theory of dynamic
topological logic, elucidating a series of powerful notions which, in addition to allowing us to understand
nondeterministic union/coin-flipping with precision, suggest a variety of fascinating further inquiries.

0 Introduction

In an unpublished note,1 Immanuel Kant made the following claim: “The business of philosophers
is not to give rules, but to analyze the covert judgments of common reason.”2 Setting aside the
nebulousness of the phrase, “common reason”, the underlying point is fairly straightforward: when
going about their lives and interactions with their world, people seem to operate on some basic,
pretheoretic conception of the way the world is and the ways it could be. This “conception” is
not (and perhaps cannot be) made fully explicit, but nonetheless it seems to be the basis upon
which each of us navigates our world and makes day-to-day choices. Only in select circumstances
do we typically make use of explicit scientific reasoning to guide our actions – for the most part, we
lean on this implicit, informal framework.3 Therefore, the nature, structure, and function of this
“conception” becomes a worthwhile topic of inquiry: if we understood with exactness the unspoken
principles a person applies to make sense of (and make use of) her present situation, we would
gain much better insight into the structure of her reality. Our purpose here will be to explicate
the logical and mathematical structure of such a “conception” of the world (and its possibilities),
understood from the standpoint of a given agent ; thereby, we obtain a convincing (and concrete)
mathematical model of the world that agent experiences. Studying the properties of this model
will deliver to us a set of “judgments” – the principles covertly governing our agent’s possibilities
in the situation – overtly rendering them for precise analysis.

We’ll begin by expounding a variety of mathematical logic suited to this task, which we’ll call
Agent Dynamic Topological Logic (“agent DTL”). Agent DTL consists of a formal language (called
L�©), a theory of models (called dynamic topological models, or DTMs), and a formal deductive
calculus (called ADTL). The language will allow us to formally and exactly state propositions about
the agent (and her abilities), the models will represent the mathematical structure of the agent’s
“conception” of the possibilities (and will give meaning to the L�© terms), and the deductive

1Akademie edition of Kant’s Collected Works, Vol. 15, p. 180. This quote was likely written sometime around
1769-1771. An unpublished note from earlier in his career is obviously not an authoritative statement of Kant’s
philosophy, but I like the expression regardless.

2“Der philosophen Geschäfte ist nicht, Regeln zu geben, sondern die geheime Urtheile der gemeinen Vernunft
zergliedern.”

3Of course, it could well be argued that some features of scientific reasoning are inherent to this “informal
framework” as well. That is certainly an interpretation which can be sustained throughout the present work – see
the comments on “observation” in Sect. 1.
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calculus will allow us to derive formal statements of the structural properties of these models – and
thereby obtain formal statements of the structure of the agent’s world.

Furthermore, this logic (introduced as “DTL” in [5]) represents the confluence of several threads
in mathematical logic and theoretical computer science, and retains intimate connection to these
disciplines. In particular, it combines dynamic topological logic4 with propositional dynamic logic.5

The former is itself a combination of two prominent topics in modal logic: topological semantics6

and the logic of partial functions.7 Each of these logics contributes a different aspect to agent
DTL, and suggests further connections and research. We make an effort to indicate some of these
connections and further applications of our method, though enumerating (let alone fully exploring)
all of them is far beyond our scope.

We will focus our analysis on a certain activity peculiar to the human species: coin flipping.
Though this is a rather simple and specific example, it will prove challenging to apprehend in its
mathematical totality. Our reflections on the intended purpose of a “proper” coin flip will indicate
for us the rough outline of how to proceed with such a mathematical analysis, which we can then
make explicit. After giving an account of how the ability of the agent to flip a coin transforms the
arrangement and structure of possible worlds, we give an axiomatization of how this transformation
“works” in a simplified fragment of the agent DTL formal language. These axioms, when read as
statements about agents interacting with coin-flipping situations, come out as plausible descriptions
of the agent’s abilities – vindicating our choice of interpretation.

This accomplished, we will turn our focus to fully articulating the logic of coin-flipping sit-
uations, using the agent DTL model theory. As mentioned, this is not easy. To achieve such a
result, we will need to make a thorough dive into the theory of dynamic topological models.8 In
particular, it will be necessary to develop a notion intermediate to the traditional distinction in
modal logic between models and frames, which we’ll call refined frames.9 Refined frames serve as
the correct level of structural generality to capture the phenomenon of coin-flipping, a fact which
we demonstrate by carrying out the appropriate analysis. We conclude by arguing that we have
indeed obtained clarity on the covert judgments of common reason about coin flips, and speculating
about further applications of our method.

4See e.g. [10], [4]
5[9] is the paper where this was introduced. The Stanford Encyclopedia of Philosophy provides a good introduction

to PDL [16], whose notation we’ll mimic.
6The classic paper on this is [11], but see also [2] or [3].
7The partial functions provide semantics for “Diamond-type” Kripke-style modalities (i.e. existentially quantifying

over the 0 or 1 “accessible worlds”). We’ll give both a philosophical interpretation of why these are interpreted as
partial functions (rather than arbitrary relations), and see this requirement reflected in the deductive calculus.

8Which – even disregarding our philosophical motivation – proves interesting in its own right.
9Similar to (but less general than) the notion of a “general frame” – see [7, Section 5.5]
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0.1 Mathematical Reference

This essay relies on a variety of mathematical notions, notations, and conventions. Most of what
is needed will be explicitly introduced in the text, but we will assume some prior knowledge. The
main ideas, terminology, and notation assumed is summarized below, for reference.

I assume familiarity with standard notions and techniques from mathematics, e.g. sets, binary
relations, and functions. A partial function between sets X and Y , denoted f : X ⇀ Y , consists
of a relation f ⊆ X × Y where, for each x ∈ X, there is at most one y ∈ Y such that (x, y) ∈ f . If
there is such a y, we say f is defined at x and denote y by f(x); otherwise we say “f is undefined
at x” or “f(x) is undefined”. The set of those x ∈ X such that f is defined is called the domain
of f , whereas the set Y is called the codomain. We call f a total function (or just a “function”)
if its domain is all of X. Many of the usual notions defined for functions make sense for partial
functions as well, such as injectivity and surjectivity.

Familiarity with classical propositional modal logic is assumed (the first several chapters of [7]
provide more than adequate reference). I’ll assume the reader knows and is comfortable with the
syntax and relational (“Kripke-style”) semantics for multi-modal propositional logic, the associated
deductive calculus (K), and the meaning and demonstration of the soundness, (strong) completeness
results, and the topics of definability and invariance. The distinction between model-level and
frame-level formula satisfaction (and class definition) is key, as is the notion of a bisimulation.
Much of this paper will be devoted to carrying out analogous development in a richer setting. In
addition, familiarity with topological semantics for modal logic (see e.g. [2] or [3]) will prove helpful
– see below for a note on the topological concepts we need. Finally, we’ll frequently make reference
to the idea – common to several branches of mathematical logic – of a function symbol with a
specific arity. We don’t systematically distinguish between function symbols which are written in
prefix or infix position.

We make heavy use of binary relations. If R ⊆ X × Y , we may indicate (x, y) ∈ R by writing
xRy or saying “x is related to y by R” or “x and y are R-related”, as appropriate. Sometimes, we
wish to think of binary relations R ⊆ X × Y as “multi-valued partial functions”: for each x ∈ X,
we write R(x) to indicate the (possibly empty) set of all those y ∈ Y such that xRy. When we
want to emphasize this perspective, we might write R : X →| Y to indicate R ⊆ X × Y , especially
if X and Y are understood to possess additional “structure” which R “respects”.

• We’ll say that R is total if R(x) is nonempty for all x ∈ X.

• If U ⊆ X, then R(U) denotes the set of those y ∈ Y such that xRy for some x ∈ U . We call
R(U) the image of U under R.

• If V ⊆ Y , then R−1(V ) = {x ∈ X : xRy for some y ∈ V }. We refer to this as the preimage
of V under R.

• For y ∈ Y , R−1(y) is shorthand for the set R−1({y}). If R−1(y) is nonempty for all y ∈ Y ,
we say that R is surjective.

If R ⊆ X ×X is an equivalence relation and x ∈ X, we’ll write [x]R (or just [x] if R is understood)
instead of R(x), and call it “the R-equivalence class of x”. We write X/R for the quotient of
X by R, the set of all R-equivalence classes, and write QR for the canonical projection function
X → X/R sending x to [x]R.

We also make use of notions and techniques from topology. [13] is a standard introduction
to general topology. A topology τ on a set X is a collection of subsets of X called open sets,
subject to the axioms of topology :
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1. X, ∅ ∈ τ

2. If U, V ∈ τ , then U ∩ V ∈ τ10

3. If I is an arbitrary set and Ui ∈ τ for all i ∈ I, then
⋃
i∈I Ui is also in τ .

The two simplest topologies on X are the discrete topology (τ = P(X), i.e. every set is open) and
the indiscrete topology (τ = {∅, X}). We’ll indicate that τ is a topology on X by writing “(X, τ)
is a topological space”. Given such a topological space and some subset A ⊆ X, we write int(A)
(called the interior of A) to indicate the largest open set contained within A. An element x is in
int(A) iff there’s some U ∈ τ such that x ∈ U ⊆ A. If s : X → Y (or s : X ⇀ Y or s : X →| Y ),
we say that s is continuous with respect to topologies τX , τY on X and Y (respectively) if, for
all V ∈ τY , the preimage s−1(V ) of V is in τX . Dually, we say that s is open if the image of any
U ∈ τX is in τY .

Topologies may be specified by bases. A topological basis (on a set X) is a collection
B ⊆ P(X) satisfying

1. For all x ∈ X, there’s a B ∈ B such that x ∈ B.

2. If B0, B1 ∈ B and x ∈ B0 ∩B1, then there’s a B2 ∈ B such that

x ∈ B2 ⊆ B0 ∩B1

Each basis B generates a topology τ(B). A set U ⊆ X is open with respect to τ(B) (i.e. U ∈ τ(B))
iff U can be written as

U =
⋃
i∈I

Bi

where each Bi ∈ B. A simple proof shows that x is in the interior of A ⊆ X with respect to τ(B)
if and only if there’s a B ∈ B with x ∈ B ⊆ A. Given topological spaces (X, τX) and (Y, τY ), we
may define their product topology to be the topology on X × Y generated by the basis

{U × V : U ∈ τX , V ∈ τY } .

Note that the projection functions pr1 : X × Y → X and pr2 : X × Y → Y are continuous and
open with respect to these topologies. Finally, given a topological space (X, τX) and an equivalence
relation R on X, we define the quotient topology τX/R to be the topology on X/R given by

τX/R = {U ⊆ X/R : {x ∈ X : [x] ∈ U} ∈ τX} .

The quotient map QR is automatically continuous, and is open iff the following condition holds

For all U ∈ τX , R(U) ∈ τX .

Some of our central constructions will be achieved using strings and streams. Given a set Λ,
write Λ∗ for the set of all (finite-length) Λ-strings. All Λ-strings are either ε (the empty string) or
λ_s for λ ∈ Λ and s ∈ Λ∗. In the latter case, we call λ the head and s the tail of λ_s.
A Λ-stream is an infinite-length Λ-string. Formally, we think of this as a function N → Λ, and
use ΛN to denote the set of all such streams. Similar to strings, we may extract the head and tail
of a stream, and will write S = λ_S′ to indicate that S(0) = λ and S(n) = S′(n− 1) for all n > 0.

10By a simple inductive argument, this is equivalent to requiring that the intersection of finitely-many open sets is
always guaranteed to be an open set.
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Finally, we make occasional reference to proper classes, which are collections that are “too large
to constitute a set”. For instance, there cannot be a set of all topological spaces. The standard
workaround is to speak of the class of topological spaces. The reader is encouraged to make sense of
this according to their preferred foundational system. Though we remain intentionally nebulous on
this point, our central notion (that of a program constructor) is indeed a class function, a function
between proper classes. We also make use of this terminology to state soundness, completeness,
and definability results: for instance, “∆ defines the class K” just means that a structure (of the
relevant kind) validates ∆ if and only if it is an element of the class K. K will generally be specified
as those structures satisfying a given property, so class membership can be taken as a shorthand
for satisfying the defining property.
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1 Review: The Epistemic Interpretation

1.1 Agents and Situations

We begin by describing in more detail the phenomena we wish to formalize.

Agents find themselves in situations. In a situation, the agent perceives some features and
properties of the situation, and perhaps utilizes the insights from these observations to guide their
actions in the situation. By acting, the agent moves through the situation, and perhaps changes the
truth of various propositions. For instance, if Alice is at a casino playing blackjack, then we would
say that Alice found herself in the situation of “playing blackjack at the casino”. The “situation”
itself consists in the tables, the chairs, the cards, the chips, the people, etc. that Alice really
interacts with,11 but we are interested in how these things, in concert, create a dynamic-epistemic
structure which Alice, so to speak, navigates.

Part of what makes the situation “playing blackjack” what it is, is the structure of what Alice
is able to do in that situation: say Alice is dealt a 9 of spades and a 7 of clubs. At some point
of the game (when it is her turn), Alice is required12 to perform one of several available actions
(in blackjack, the allowed actions are mostly hand gestures telling the dealer what to do), and
performance of these actions results in different outcomes. For instance: tapping the table when
it’s her turn (known as “hitting”) will make the dealer deal Alice another card, which could result
in her losing the game (e.g. if the next card she gets is another 7, then, per the rules, she loses),
or ending up in a more advantageous position (e.g. if the card she gets is a 3, then she’s still in
the game and is better-off). This is the “dynamic structure”: as Alice goes through this situation,
there’s some fact of the matter about what’s true at the present moment, but also about what will
be true upon the execution of various actions. “Tap the table” is an action which is available to
Alice at certain points of the situation, and by performing it, Alice may take her from one point of
the situation (the beginning of her turn, at which point she is still in the game) to another (perhaps
a state where she is no longer in the game). Throughout, we use “point”, “state”, or even “world”
to refer to these moments within the situation, which the agent moves between by her actions.13

From a birds-eye view, we think of this dynamic structure of the situation as a collection of
different possible14 game states (different points the blackjack game could be at) connected by
actions: if the agent executes a certain action (call the action π)15 in the current point of the
situation, then, by the time she’s done with π, she’ll find herself in a (perhaps) different point.16

See Figure 1.1 for a visual depiction of such a setup. Part of what defines a situation is this
internal structure: to truly specify how a situation (like playing blackjack) operates, we must
provide indication of how the agent can move through that situation by executing various actions,
and how executing those actions alters the truth of various propositions (like whether Alice is still
in the game).

The situation must also encode what kinds of things Alice is able to learn about the circum-
stances she’s in: part of what will inform her choice of what to do on her turn is what she can
observe about her situation. For instance, when playing blackjack, the player’s cards are dealt
face-up (i.e. visible to all), but only one of the dealer’s cards is dealt face-up. A good blackjack

11We need not make any hard commitments as to the ontological status of “situations”. A reader skeptical of such
entities may regard this merely as a manner of speaking about real-world phenomena.

12The actual details of how blackjack is played aren’t important.
13We assume that these states are specified in a contextually-appropriate way.
14E.g. including all possible ways the cards could be dealt, and all possible points of such games
15We’ll use π, σ, π0, π1, etc. to denote available actions
16We say “perhaps” because maybe we’ll also include actions which don’t change the state of the game at all. For

instance, if Alice executes the action “scratch her head”, then this has no meaning in the game of blackjack and
therefore doesn’t change the game state like “tap the table” does.
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π0

π1

π2

x

x′

x′′

x′′′

A

Figure 1.1: A situation S
If the agent A is at some point x and performs action π0 (resp. π1, π2), she’ll find herself at x′ (resp. x′′,

x′′′)

player will use the information given to them (the cards they can see) to guide their strategy. So
Alice is able to perceive things (by making appropriate observations, e.g. looking at the dealer’s
face-up card) and thereby come to know true propositions about the current point of the situation
(for instance, that the dealer’s face-up card is a 4). But Alice is not able to know (at the current
point of the situation) that the dealer’s other card is, say, a King of Diamonds: the card is face-
down, so Alice’s observational powers do not permit her to know what it is. In general, we’ll think
of our agent as having access to some limited “observational tools” (e.g. her vision and hearing)
which she can employ to learn, that is, to come to know some true propositions about the current
point of the situation. There may be propositions which are knowably true (i.e. it’s true in the
present situation, and moreover our agent is able to know this), or true-but-not-knowably-so (i.e.
the proposition is true, but our agent’s limited knowledge-gathering abilities do not allow her to
know this), or knowably false, or false-but-not-knowably-so. This is the “epistemic structure” of
the situation.

Note that we’re restricting our attention to just what the agent is able to know, and won’t
endeavour (here) to model the actual state of the agent’s knowledge.17 We don’t yet have the
tools to articulate precisely what it means for an agent to “be able to know” something in a given
situation, but we will. For now, it suffices to note that we’re interested in what an agent is able to
know, and want our account of situations to be able to encode such features.

The frontier between “acting” and “learning” in our framework deserves clarifying. For sim-
plicity, we assume that learning is contained within a given point. In a blackjack game, Alice can
make all possible observations quickly, and so merely observing does not take her to a different

17This idea is pursued in [5, Section 5]. There, the agent’s actual state of knowledge is explicitly modeled as an
additional parameter, which certain actions are capable of mutating. Our intention with the present work is that
such an enrichment could be added to the models we design here, though the exact details are left to future work.
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state.18 Relatedly, we don’t take “Alice could come to know ϕ” to be true in a point x if the only
way Alice could come to know ϕ is by taking some action and moving to a different point x′ where
she can come to know that ϕ was true in x. Actions which change the situation do not count as
“epistemic tools” in the foregoing sense. This is really the only choice of convention which will
make an account of nondeterminism (in particular, coin-flipping) tenable: we want to be able to say
“Alice cannot know in advance whether the coin will come up tails”. In order to correctly capture
what “know in advance” means, we need our sense of “knowability” to be prior to actions.19

There are numerous other philosophical and psychological features which make up the possibil-
ities for an agent’s experience of a situation (e.g. her beliefs, her desires, the abilities, knowledge,
and intentions of other agents, etc.), but we will limit ourselves to just these. As we’ll see, just
these structural components (what’s true, what can the agent do, and what can the agent know)
will be more than enough to occupy our attention. Let’s then proceed to articulate the logical-
mathematical structure of situations with this structure. We begin by introducing some more
formal notation.20

1.2 Epistemology and the Language of ADTL

For the duration of this thesis, the formal languages we’ll be primarily working with are instances
of L�©(Σ).

Definition 1.1
Let Σ be some given countable set, whose elements we’ll call “actions” or “programs”,21 and
let Φ be a given countable set of primitive (or “atomic”) propositions. We define L�©(Σ) by
the grammar

ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | ©σϕ | �ϕ

where p varies over Φ and σ varies over Σ. We’ll make use of the standard abbreviations, e.g.
ϕ → ψ for ¬(ϕ ∧ ¬ψ), > for ¬(p ∧ ¬p), and ♦ϕ for ¬�¬ϕ.

L�©(Σ), suitably interpreted, is just the right language to express the above-mentioned prop-
erties of agents and situations. Consider an agent A in some point x of a situation S. As above,
there are some actions available to A in x, each of which would take A to a (possibly) different
point x′ of S. A also has access to tools of inquiry and is thereby able to come to know the truth or
falsity of various propositions in her current state. But, importantly, there are perhaps statements
which are true at x which A lacks the ability to know. We’re able to formulate statements about
A’s interaction with S (and possibilities of movement through S) in the language L�©(Σ) via the
following interpretation.

• The set Φ collects all the basic, extralogical propositions which can be true or false in the
situation. So if p ∈ Φ, then p is true at x just in case the corresponding proposition holds of

18In real life, there are often situations where knowledge-gathering takes a non-negligible amount of time. In
particular, real agents often find themselves having to balance diligence versus decisiveness, as their possibilities for
action evolve the longer they take gathering information. Modelling situations with a more complex interplay between
knowability and possible action will require more work than we care to get into here, so we’ll generally assume that
– like in a game of blackjack – our agent can conduct her observational due diligence in a negligible amount of time,
without changing the state (in particular, without changing the suite of available actions).

19Of course, this absolutely does not preclude the possibility of there being actions which, upon being performed,
land the agent in a different, more transparent situation. “Learn to read” is such an action: upon performance of
“learn to read”, our agent finds themselves in a different situation (because in the prior situation they didn’t know
how to read), and in this resulting situation the world is significantly more transparent to them – there’s so many
more true propositions ϕ which the agent is, in this situation, able to know.

20All these definitions are taken (with some minor modifications) from [5].
21Or, perhaps more precisely: Σ is the set of names of actions/programs, in that elements of Σ denote actions.
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that point of S. For instance, if p denotes the proposition “the dealer’s visible card is a 6 of
Clubs”, then p holds in those points x where the dealer’s visible card is a 6 of Clubs.

It’s worth noting that we’re taking these propositions as atomic, i.e. without any internal
structure. Thus, in general there will be no relationship between when p holds and when q
holds. The present analysis could perhaps be enriched to support, say, first-order terms and
quantification – but we do not do so here. Relatedly, we could perhaps allow for some atomic
propositions to be neither true nor false but meaningless at certain points. We also preclude
this for simplicity, and assume that each atomic proposition (and therefore every formula) is
either true or false at each point of the situation.

• We’re able to close our statements under the classical propositional connectives, and under-
stand their truth conditions accordingly. For instance, ϕ ∧ ψ holds in x just in case ϕ holds
in x and ψ holds in x.

• We assume that in x – and in any other possible state of S – every possible action is denoted
by some element of Σ (but allow for elements of Σ to lack a denotation in some – or all –
situations). So if σ ∈ Σ, then the formula ©σϕ is read “after σ, ϕ holds”. This proposition
is true at a point x just in case (a) it is possible to perform σ from x, and (b) doing so would
result in a state s′ where ϕ holds.

If σ ∈ Σ has no denotation at x, we simply understand this to mean that the action denoted
by σ is not possible in x,22 in which case every proposition ©σϕ is vacuously false at x: if
executing σ from x is not even possible (i.e. there is no well-defined situation that σ results
in), then it’s certainly not the case that executing σ at x would result in a point where ϕ is
true.23 The three possibilities are depicted in Figure 1.2.

• Finally, we read the proposition �ϕ as “ϕ is knowably true”, “ϕ is measurably true”, or
“the agent could come to know24 that ϕ is true”. What it means for �ϕ to be true at x
is not merely that ϕ is true at x, but that A’s tools of inquiry are powerful enough that
A could come to know that A is true. Note that this notion is entirely relative to A and
her knowledge-gathering tools: if A has weak learning powers, then her situation is more
opaque and there are more formulas ϕ such that ϕ is true but �ϕ is not. If A’s investigative
apparatus is more sophisticated, then she has greater capacity for learning and there are more
formulas ϕ such that �ϕ holds. Her knowledge-gathering abilities are allowed to vary based
on the point: initially, Alice cannot see the dealer’s second card, but later in the game it’s
revealed and she can come to know what it is. Our provision above – that this notion of

22Or, if we’re thinking computationally, it could mean that executing σ in state x would not terminate,
23Saying that ©σϕ is false at x when σ is impossible is, admittedly, a choice which might not accord with some

readers’ interpretation of what “after σ, ϕ” ought to mean. Other conventions could be that “after σ, ϕ” is true
(Lewis-Stalnaker), or simply meaningless (Strawson) if σ is impossible.

We chose “after σ, ϕ” to be false in our semantics simply because it’s most convenient, and nothing seems to
depend essentially on it. For what it’s worth, the Lewis-Stalnaker version can be recovered in our semantics: if σ

is defined like ©σ, but is vacuously true when σ is undefined, then the following are tautologies.

σϕ ↔ (©σϕ ∨ ¬©σ >) ↔ ¬ ©σ¬ϕ

©σϕ ↔ ( σϕ ∧ ¬ σ⊥) ↔ ¬ σ¬ϕ
So readers who prefer a Lewis-Stalnaker convention can view ©σ as an abbreviation for the right-hand formula (or
the middle formula) of the latter tautology. The duality between ©σ and σ is yet another instance of the duality
between bounded universal and bounded existential quantification, which is central to modal logic.

It’s not immediately clear how much different our analysis would be if we followed Strawson’s convention (and
generally allowed formulas to lack a truth value in some worlds), but I suspect the differences wouldn’t be essential.

24Or will come to know, if she makes the right observations
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Figure 1.2: The three different combinations of truth values for ©σϕ and ©σ¬ϕ

“knowability” does not include A changing the state by undertaking actions – applies here
as well.

The dual ♦ϕ is shorthand for ¬�¬ϕ, i.e. “it is not knowably true that ¬ϕ”. We treat this as
meaning “ϕ is consistent with any knowledge A could obtain”, or “as far as A could know,
ϕ could be the case”.

Before we proceed to specify our mathematical models, let us use this new notation to say one
further word about how we’re understanding “knowability”. Specifically, let us mention that we’re
realizing the knowability modality as a contracting operation on sets of worlds. To see what this
means, suppose we had some proposition ϕ ∈ L�©(Σ). Let’s say that ϕ is in fact true at the point
x which A finds herself in presently. We might depict that as follows.

We’ve depicted the current state x (where A is) alongside various other possible states of
the situation. Note that these are depicting “possible worlds”, not (necessarily) adjacent physical
locations. We’ve shaded in the “extension” of ϕ – those worlds where ϕ is true. When we say we’re
interpreting knowability as a contracting operation, we mean that the extension of �ϕ – the set of
points where ϕ is knowably true – is contained in the extension of ϕ. See Figure 1.4.

So, since A is in one of the �ϕ points (one of the ones in the darker shaded region), that means
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Figure 1.3: Extension of ϕ
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Figure 1.4: Extensions of ϕ and �ϕ

that ϕ is knowably true at x – in this situation, A can come to know that ϕ is true. The fact that
the extension of �ϕ is contained in the extension of ϕ just means that all �ϕ-states are ϕ-states:
A can’t come to know ϕ unless ϕ is, in fact, true.

The worlds in the extension of ϕ but not in the extension of �ϕ (i.e. in the shaded region
but not the darker shaded region) are worlds where ϕ is true, but A does not possess the tools to
know this, i.e. ϕ is true-but-not-knowably-so. Notice that the extension of �ϕ consists of those
points which were not merely in the extension of ϕ, but robustly within it.25 So the “ϕ is true but
not knowably so” worlds are “on the border” of the extension of ϕ, barely inside. These spatial
intuitions of “robustly within” or “on the border” are completely informal at this point (we will
make it formal shortly), but serves as a useful (and reasonably apt) intuition for how we’ll be
thinking about knowability. We’ll develop this connection more in the next subsection.26

To close out this subsection, we’ve depicted the meaning of ©σ�ϕ and �©σϕ (see Figure 1.5
and Figure 1.6, respectively) as a demonstration (and for reference later when we’re dealing with

25“Robustly” as opposed to “barely”.
26We require that this “contraction” operation satisfy Kuratowski’s Interior axioms
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these formulas). The reader is encouraged to intuitively understand the difference between these
two – their difference will go on to play an important role in our analysis (see Subsect. 1.5).

All red arrows

are σ

x

A

¬ϕ

�ϕ

ϕ

Figure 1.5: ©σ�ϕ
“after σ, ϕ will be knowably true”

1.3 The Theory of Dynamic Topological Models

Our next task will be to develop the model theory of agent DTL, and argue it adequately reflects
the epistemic intuitions above. In particular, this theory will make the depictions in the previous
subsection (Figure 1.3, Figure 1.4, Figure 1.5, and Figure 1.6) more precise, and give explicit
semantics for L�©(Σ) formulas. Our ultimate task will be to determine the characteristic features
of the models (articulated in L�©(Σ), i.e. object-language axiomatizations of the logic of these
models), and then assess these conclusions against our intuitions once again.

L�©(Σ) is interpreted in mathematical structures known as Σ-dynamic topological models,
or Σ-DTMs. Let’s first define what Σ-DTMs are, and then explain how each component of the
structure connects to the above considerations of agents in situations.

Definition 1.2
Let Σ be a set of program symbols. A Σ-dynamic topological frame (“Σ-frame”, or “frame
interpreting Σ”) is a triple F = (X, τX , {fσ}σ∈Σ) where:

• X is a set (whose elements we’ll refer to as the “states”, “worlds”, or “points” of F)

• τX is a topology on X (whose elements we call “open sets”)

• For each σ ∈ Σ, fσ : X ⇀ X is a partial function defined on some (possibly empty)
subset of X. We call fσ the “interpretation of σ in F”.

If F is a Σ-frame and V : Φ→ P(X) is a function sending propositional letters p to subsets
of X, we say that V is a valuation on F and call V (p) the “extension” of p in (F , V ). In
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Figure 1.6: �©σϕ
“A can come to know (before executing σ) that executing σ will result in a world where ϕ is true”. Notice

that the orange region (the extension of ©σϕ) consists of exactly those worlds which have an outgoing

σ-arrow which terminates in a ϕ-world.

this case, M = (X, τX , {fσ} , V ) – also indicated by M = (F , V ) – is called a Σ-dynamic
topological model (“Σ-DTM”, or “DTM interpreting Σ”).

For a Σ-DTM M (respectively: a Σ-frame F), we write |M| (resp. |F|) for the set X
underlying M (resp. F); for any σ ∈ Σ, we write ‖σ‖M (resp. ‖σ‖F ) to denote the partial
function fσ : |M|⇀ |M| interpreting σ in M (resp. F).27

Note that both the language L�©(Σ) and the definition of a Σ-DTM are parametric over the
“program set” Σ.28 Indeed, we can discuss the interaction between DTMs with different program
sets. For instance, notice that if Σ ⊆ Θ, then every Θ-frame is also a Σ-frame (and every Θ-DTM
is a Σ-DTM) – just forget that it has interpretations for Θ \ Σ.

As promised, Σ-DTMs interpret the formulas of L�©(Σ).

Definition 1.3
Given a Σ-DTM M = (X, τX , {fσ} , V ), and a world x ∈ X, we interpret formulas of L�©(Σ)

27Of course, |(F , V )| = |F|.
28They’re also both parametric over the set Φ of primitive propositions, but we suppress this fact by generally

assuming that Φ is fixed in the background.
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according to the following semantics.

(M, x) |= p ⇐⇒ x ∈ V (p) (p ∈ Φ)

(M, x) |= ¬ϕ ⇐⇒ (M, x) 6|= ϕ

(M, x) |= ϕ ∧ ψ ⇐⇒ (M, x) |= ϕ and (M, x) |= ψ

(M, x) |= �ϕ ⇐⇒ x ∈ int(JϕK)
(M, x) |=©σϕ ⇐⇒ fσ(x) is defined and (M, fσ(x)) |= ϕ (σ ∈ Σ)

The judgment (M, x) |= ϕ is pronounced “(M, x) validates ϕ”. We write JϕK to indicate
the set of worlds x ∈ X such that (M, x) |= ϕ. And int(A) denotes the topological interior of
A ⊆ X, according to the topology τX (see below).

We write M |= ϕ and say “M validates ϕ” just in case (M, x) |= ϕ for all x ∈ X. If ∆ is
some set of L�©(Σ) formulas, we write M |= ∆ to indicate that M |= ϕ for all ϕ ∈ ∆.

We connect these semantics to the above discussion by claiming that a Σ-DTM M is a mathe-
matical model of a situation, and the L�©(Σ) formulas which M validates express features of that
situation. Recall that we were concerned with the internal structure of the situation, and how
the different “points” or “states” of the situation relate to each other. In particular, we wanted
our models of situations to encode the possibility for the agent to move to a different state of the
situation by performing actions, as well as the agent’s capacity for coming to know various true
propositions at different points. A Σ-DTM models exactly these features. The worlds x ∈ X of a
Σ-DTM M represent the different states of the situation, the partial functions encode the ability
of the agent to move through the situation by their actions, and the topological structure models
the agent’s capacity for knowledge. We’ll see that the semantics for Σ-DTMs interprets L�©(Σ)
formulas in a way which reflects the above-established intuitions about what these formulas ex-
press philosophically, so the L�©(Σ) formulas validated by the Σ-DTM meaningfully articulate the
properties of dynamic-epistemic situations.

Let’s begin by noting how the definition of a Σ-DTM accurately captures the structure of
states within the situation and the structure of actions which move the agent between these states.
Returning to our above example of Alice playing blackjack, we conceptualized the situation as a
collection of “points” or “states” that Alice proceeded between by performing actions (e.g. if she
were at point x, then perhps executing action σ could land her in a different world x′. Mathemat-
ically, this is most straightforwardly expressed as a set (the set of states in the situation) with a
structure of partial functions (representing the effect – and possibility – of various actions at each
state). So we assume that every possible action (at any point) is denoted by some element of Σ,29

and then we interpret the action denoted by σ ∈ Σ as a partial function fσ from states to states.
If fσ(x) is defined for some state x, we interpret that as σ being “possible” or “allowed”30 at point
x. And the resulting point fσ(x) is the state once the action is complete. For instance, if x is a
state where it’s Alice’s turn and she has been dealt a 9 of spades and a 7 of clubs, then the action
“tapping the table” – which we’ll denote by σ – is allowed. If she does it, that will result in some
new game state x′ = fσ(x) where Alice has one more card than she did in x (the dealer dealt her
one more card, as a consequence of her tapping the table). Let ϕ denote the proposition that Alice
is still in the game. Suppose the card she’ll be dealt if she taps the table will cause her to lose
and no longer be in the game. So we’d say that ¬ϕ held at x′, because ϕ is not true there. And
we’d also say that “after σ, ¬ϕ” held at x, because it is indeed the case that performing the action
denoted by σ from x would result in a ¬ϕ state: it results in x′. Fittingly, this is precisely the

29A plausible assumption, since Σ is allowed to be infinite.
30E.g. an allowable move for the agent to make, according to the rules of blackjack.
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circumstances under which our Σ-DTM semantics for L�©(Σ) would declare ©σ¬ϕ to hold at x,
affirming our choice of interpretation.

And, moreover, the topological semantics for � accord with our interpretation of �ϕ as “the
agent could come to know ϕ”, and with our understanding of Σ-DTMs as models of how agents
reason their way through situations.31 We indicated that our agents are able to make observations
which inform them of the truth or falsity of some propositions about the current world. Recall
that, in a game of blackjack, one of the dealer’s cards is visible (“face-up”) and the other is hidden,
initially. However, at a later time the dealer’s second card is revealed. At the point of the game x
where Alice is deciding whether to motion the dealer to deal her another card or not, she can only
see one of the dealer’s cards – the second hasn’t been revealed. But at some later point (call it x′′),
the dealer’s other card is revealed and she can observe it. So in x the agent can come to know that
the dealer’s face-up card is, say, a 4. In x′′ she can know this, and she can know (she will know
if she just looks) that the dealer’s other card is, say, the King of Diamonds. To incorporate this
into our framework, we want to specify a criterion for which ϕ-states are moreover �ϕ states. The
topology will accomplish this beautifully.

How do we make sense of her “observing” at x that the dealer’s face-up card is a 4? Well,
what we want an observation to encode is information for the agent about what possible state she’s
in. We do so by making an “observation” a subset of the set X of all possible states. If the agent
observes O ⊆ X, she knows that, whatever world she’s presently at, it must be in O. This thereby
rules out all the non-O worlds as worlds she might presently be at.32 So, for instance, if she observes
that the dealer’s first card is a 4, then O is the set of all points where the dealer’s first card is a 4.
By making this observation, Alice has ruled out all the non-O worlds, and we would now say that
she knows the dealer’s first card is a 4. Since it can be known at x (i.e. the information is available
at x) that the dealer’s first card is a 4,

x |= �(the dealer’s first card is a 4).

Notice that, more generally, this is true because O ⊆ Jthe dealer’s first card is a 4K: after making
the observation O, every world Alice considers possible is a world where the dealer’s first card is a
4. This will be our notion of what it means for Alice to “know” that a given proposition is true. We
won’t deal here with any concern about the agent’s observations being faulty: we’ll always assume
that the present world x must be included in any observation O the agent makes. In other words,
all her observations must be consistent with the actual world, and therefore she can only come to
know things which are true.

However, there are propositions Alice cannot come to know, even though they are true: Alice
cannot observe at x that the dealer’s second card is the King of Diamonds. So even if it is indeed
true that the dealer’s second card is the King of Diamonds,

x 6|= �(the dealer’s second card is the King of Diamonds).

At x, the card is face-down, and so Alice can only observe the back of the card (which carries no
information). Thus, any observation she can make in that regard is consistent with the card being
something else (i.e. not being the King of Diamonds), hence why she cannot know it is actually
the King of Diamonds. Phrased more mathematically, for any observation O, we have that

O 6⊆ Jthe dealer’s second card is the King of DiamondsK

So there are some subsets of X which are not valid observations the agent can make: there is no
observation O ⊆ X the agent can make at x (x ∈ O) which tells her that the dealer’s second card
is the King of Diamonds (O ⊆ Jthe dealer’s second card is the King of DiamondsK).

31The notion of “knowability” we advance here is particularly close to that of [6] and [?]
32If we identify a proposition with its extension, then “observing O” is “observing that O”
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So, more generally, a world x validates �ϕ iff there’s an observation O the agent is allowed to
make such that x ∈ O ⊆ JϕK. But we must somehow constrain the set of subsets of X which count
as “observations” in this sense. For a very specific example (like blackjack), we can enumerate
all the different pieces of information the agent can come to obtain by observation and specify
the allowed observations accordingly. But in general, we’d like some conditions which say a bit
more about what minimal properties we want to require of these subsets of X in order for them to
count as “observations”. It results in an elegant theory if we require that the set B of all possible
observations the agent could make satisfies the following two properties

(B1) For all x ∈ X, there’s an O ∈ B such that x ∈ O

(B2) If O0, O1 ∈ B and x ∈ O0 ∩O1, then there’s a O2 ∈ B such that

x ∈ O2 ⊆ O0 ∩O1

(B1) is something of a tautology: for every state there must be some observation possible. The
easiest way to satisfy this is to just put X ∈ B: the agent can make the trivial observation which
does not rule out any possible states. (B2) is a bit trickier to interpret, and encodes as certain
requirement about the manner in which the agent makes observations. It says that, for any pair of
observations O0, O1 the agent could make, there’s some other observation O2 which is at least as
strong as both (“strong” in the sense of ruling out more worlds, i.e. all worlds that are consistent
with O2 are consistent with both O0 and O1). That is plausible in the blackjack situation, for
example, because the agent is able to observe all the available information (their two cards, and
the dealer’s exposed card)33 essentially instantaneously, so we can think of there being a single
observation the agent could make at x which represents everything they could know at x, satisfying
(B2). To make better sense of (B2) would require more of a detour than we care to take here.
For our purposes, we will accept (B2) because, as mentioned, it allows for an elegant mathematical
description of knowability. As we’ll see, the notion we develop from this will turn out to be plausible
description of the logic of knowability, so our acceptance of (B2) will not prove misguided.

If we have a collection B satisfying these two axioms, then B is what’s known as a topological
basis. As is developed in any standard account of topology, topological bases are all you need to
specify a topology: each topological basis B “generates” a topology τ(B) (see the Mathematical
Reference, Subsect. 0.1). So when we say that a Σ-DTM M comes equipped with a topology,
we can think of that as saying that M comes equipped with a topological basis, specifying what
observations the agent is able to make. However, it turns out that the notion of knowability we
develop below depends on the topology the basis generates, not the basis itself. In other words,
for two such “observation bases” B and B′ which generate the same topology (τ(B) = τ(B′)), the
resulting notion of “knowability” is the same. So, when we reference a basis B below, it suffices to
pick any basis which generates the topology of the DTM in question.

So why is �ϕ true on the interior of JϕK, according to the above-given semantics? Well, from
the above discussion about the information content of an agent’s observations and what it means
for her to know something, we obtain the following principle.

An agent can come to know ϕ at x iff there exists an observation O the agent could
make such that x ∈ O ⊆ JϕK

33Ignore for the moment the possibility of there being other players (the other players’ cards are also visible, which
is also information available to the agent). Also ignore the possibility that the agent could know more about the
situation, e.g. that all the Queens appeared in the previous hand and would therefore be unlikely to appear in the
current hand. We could perhaps expand the scope of our example to consider these.
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And so – assuming the set B of observations the agent can make satisfies (B1) and (B2), we have
the following result:

Proposition 1.1
For B satisfying (B1) and (B2), the following are equivalent for any x ∈ X and any A ⊆ X

• There exists O ∈ B such that x ∈ O ⊆ A

• x is in the interior of A with respect to the topology τ(B)

So if B is the topological basis corresponding to observations our agent can make, then she can
come to know ϕ at x iff x ∈ int(JϕK), where interior is taken with respect to the generated topology
τ(B). This is why we said that it doesn’t matter what basis B we use so long as it generates the
same topology: observe that two such bases B and B′ would give the same notion of interior, and
therefore the same notion of “knowability”. In summary: we equip DTMs with topologies, because
topologies encode what kinds of thing the agent is able to know by making observations (in the
foregoing sense). The notion of “knowability” we get out is topological interior: our agent can come
to know ϕ on exactly those points which are on the interior of JϕK.

Let us also note that interior is a “contracting operation”, in the sense that int(A) ⊆ A for
all A ⊆ X. This makes good on our discussion earlier of how J�ϕK should be contained in JϕK.
With that, we have argued for the plausibility of understanding Σ-DTMs as models of what an
agent can do and know inside a situation. The reason we wanted such models is to study their
properties, and to obtain theorems (in the language L�©(Σ)) articulating how the situation works.
We see that Σ-DTMs can validate or refute such formulas, and so let us now turn our attention to
understanding which formulas Σ-DTMs validate, obtaining L�©(Σ) formulas to check against our
intuitions of agents in situations. Our system for obtaining these formulas is the deductive calculus
ADTL.

1.4 The Deductive Calculus of Agent DTL

The deductive calculus ADTL is a system which declares certain L�©(Σ) formulas to be “theorems”
and the rest “nontheorems”. As usual in mathematical logic, the definition of what constitutes a
theorem of ADTL is recursively defined as the outcome of a “proving” process.

Definition 1.4
The system ADTL consists of the following axiom schemes and inference rules (summarized in
the table).

• Classical propositional logic: all (or enough) tautologies of classical propositional logic
(over L�©(Σ)) and the inference rule of Modus Ponens;

• S4�: all instances (ϕ,ψ ∈ L�©(Σ)) of the (K) scheme, the (T) scheme, and the (4)
scheme, and the inference rule of Necessitation;

• All instances (σ ∈ Σ, ϕ,ψ ∈ L�©(Σ)) of the (¬-PC) scheme, the (∧ -C) scheme, and the
rule of Monotonicity.
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ADTL Axioms and Inferences

(CPL) enough tautologies of CPL
(MP) from ϕ → ψ and ϕ, infer ψ Modus Ponens

(K) �(ϕ → ψ) → �ϕ → �ψ Distribution
(T) �ϕ → ϕ Reflexivity
(4) �ϕ → ��ϕ Transitivity
(Nec) from ϕ, infer �ϕ Necessitation

(¬-PC) ©σ¬ϕ ↔ (¬©σ ϕ ∧ ©σ>) ¬-Partial Commutativity
(∧ -C) ©σ(ϕ ∧ ψ) ↔ ©σϕ ∧ ©σψ ∧ -Commutativity
(Mon) from ϕ → ψ, infer ©σϕ → ©σψ Monotonicity

We say a formula ϕ ∈ L�©(Σ) is a theorem of ADTL, and write ` ϕ if there exists a proof
of ϕ: a sequence of formulas ϕ1, . . . , ϕn where ϕn = ϕ and for each i = 1, . . . , n, either

• ϕi = ϕj for some j < i,

• ϕi is an instance of one of the axiom schemes of ADTL, or

• ϕi can be inferred from ϕ1, . . . , ϕi−1 according to the rules of inference of ADTL.

These axioms, I claim, hold up under an epistemic interpretation. For instance, (T) asserts
that if ϕ is knowably true, then ϕ is indeed true. (Nec) asserts that the agent can come to know
any tautology (not that she does know, necessarily, but that she can). (¬-PC) states that the
statement “doing σ will result in a ¬ϕ-world” is equivalent to “doing σ won’t result in a ϕ-world,
but will result in some world (i.e. is possible)”. (Mon) states that if it’s a tautology (i.e. is true
everywhere) that ϕ implies ψ, then it’s a tautology that “after σ, ϕ” implies “after σ, ψ”. And so
on.

It turns out that these axioms are enough to fully capture the logic of Σ-DTMs.

Theorem 1.2 (Kremer and Mints, Bjorndahl)
ADTL is a sound and complete axiomatization of L�©(Σ) with respect to the class of Σ-dynamic
topological models: for all ϕ ∈ L�©(Σ),

` ϕ if and only if M |= ϕ for all M.

Theorem 1.2 affirms our epistemic interpretation. We chose to work with Σ-DTMs with an eye
towards modelling how an agent interacts with a situation, e.g. the choice of partial functions to
model the “state transition” nature of an acting agent, and the use of topology to articulate the
capacities of the agent for knowledge. With the deductive system of ADTL, we have a characteriza-
tion of all the tautologies of the theory of Σ-DTMs, and, it seems, all the theorems seem plausible
from our interpretation. Henceforth, we will take this as license to reason about Σ-DTMs as if they
were epistemic situations, and talk about how an agent would move through such a situation, and
what options were available to them in it.

With that, we can (so to speak) “take the interpretation and run with it”. As we’ll see, we can
develop the agent DTL-epistemology connection further, and encounter various dynamic-epistemic
phenomena (i.e. phenomena arising from the interaction of a knowledgeable agent with their
situation) whose internal logic can be expressed using agent DTL, via this interpretation. We’ll
begin by reviewing one such phenomenon identified by [5]: nondeterminism. We’ll then conclude
our introductory section by looking at propositional dynamic logic and its “program constructors”.
The task of developing PDL-style program constructors in the setting of dynamic topological logic
(and interpreting them epistemically) will be our main goal.
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1.5 Determinism and Continuity

In our example of Alice playing blackjack, the chief dilemma she faced was an inability to predict
the outcomes of her actions: if Alice ordered another card from the dealer, she had no way of
knowing in advance whether the new card would be advantageous for her or would result in her
losing the game. This is, in a sense, the essence of gambling: the casino has crafted a situation
for Alice wherein she cannot know the outcome of her actions, and she must decide how to act in
face of such uncertainty. We emphasize the point that we’re considering the epistemic situation
only from Alice’s perspective: while a real casino will achieve uncertainty by dealing from a shuffled
deck (which is “random” in some sense), that’s not actually necessary to create such an epistemic
situation for Alice: it’s perfectly possible that, say, the dealer could already know what the next
card is. There could even be some specific pattern to how the cards are coming out (the casino may
have, as a matter of fact, fixed the sequence of cards that get dealt). As long as Alice cannot know
what the next card is, she faces an uncertain choice.34 It is this kind of “unpredictable action” that
we’ll deem “nondeterministic” (and its negation – actions whose outcomes Alice can fully account
for – that we’ll call “deterministic”).

The content of the present subsection can be summarized as follows: three notions – continuity
(in the theory of Σ-DTMs), determinism (in the world of agents and situations), and the partial
commutativity of � and ©σ (in the proof calculus of ADTL) – all correspond in logical structure.
Indeed, we intend to argue that continuity is precisely the mathematical model of determinism (from
the standpoint of an agent and their capacities in a particular situation). Moreover, the claim “σ
is deterministic” can be formalized as a single axiom scheme in the object language L�©(Σ), and
this axiom scheme picks out precisely those DTMs whose interpretation of σ is continuous.

The study of continuous functions is central to the field of topology. If (X, τX) and (Y, τY ) are
topological spaces and f : X → Y is a function between them, then we call f continuous just in
case f−1(U ′) ∈ τX for all U ′ ∈ τY . In words: if the preimage of each open U ′ ⊆ Y under f is open
with respect to τX . This articulates a sense of the function “reflecting” topological structure: any
open subset of the image can be pulled back to an open set of the domain. We also should note
that nothing about the definition above relies on f being a total function, that is, on f(x) defined
for every x. It still makes sense to talk of continuity when f is allowed to be a partial function:
f−1(U ′) is just to be defined as the set of those x ∈ X such that f(x) is defined and f(x) ∈ U ′, a
straightforward generalization of our definition for total functions. And so we can define continuity
of partial functions in the same way we did for total functions (f−1(U ′) ∈ τX for all U ′ ∈ τY );
it therefore makes sense to wonder whether a function fσ (interpreting σ ∈ Σ in a Σ-DTM M) is
continuous or not with respect to the topology of M.

A natural question to ask is whether we can define (in the object language L�©(Σ)) the class
of Σ-frames F such that ‖σ‖F : |F| ⇀ |F| is continuous for all (or some) σ ∈ Σ. It turns out we
can: as shown in [5, Proposition 1], the scheme

©σ�ϕ → �©σϕ

defines the class of Σ-frames F where ‖σ‖F is continuous. In other words, the scheme formally
characterizes continuity (and we can require continuity for a specific set of σ by just asserting the
scheme for those σ). So we have connected the topological notion of continuity to a particular form
of L�©(Σ) formula. Now we complete the legs of our overall analogical “triangle” and connect
these two to considerations in epistemology.

Let’s consider the meaning of the axiom scheme

©σ�ϕ → �©σϕ (*)

34We could perhaps say that nondeterminism is a necessary, but not sufficient condition for “randomness”.
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under the epistemic interpretation given above. First note that we depicted the antecedent and
consequent of (*) in Figure 1.5 and Figure 1.6, so those pictures may help serve intuitions for our
discussion. Now, let’s read (*) under the given epistemic interpretation. We get: “if, after executing
σ it is knowably the case that ϕ holds, it is knowably the case before executing σ that doing so will
result in a ϕ world”. In other words, the agent doesn’t need to perform σ to learn whether doing
so will result in a ϕ world. If we call the agent’s present state x and x′ the state she would find
herself upon completing the action σ (assuming there is such a world), then (*) says that our agent
cannot know in x′ that ϕ is true unless this information was accessible to her back in x: “after σ,
ϕ will be knowably the case” being true in x implies that “it is knowably the case that after σ, ϕ”
is true in x. If (*) holds at x for all ϕ (i.e. x validates the scheme, instantiated for every formula
ϕ), this actually serves as a plausible notion for σ being epistemically deterministic at x: what
it rules out is the possibility of there being any “uncertainty” which can only be resolved by an
execution of σ itself: for any ϕ you’re able to know at x′, you’re able to know at x that performing
σ would land you in a ϕ-world. We could perhaps phrase the above as “the impacts of σ are
transparent to our agent”: nothing about the execution of σ should surprise a sufficiently-diligent
agent, because there’s no formulas ϕ which could be known to be true after the execution of σ
(©σ�ϕ) which our agent could not have known before executing σ that executing σ would result
in a ϕ world (�©σϕ). The inclusion of the antecedent (that ϕ must indeed be knowable at x′)
allows for there to be generally-unknowable propositions: if there’s some ϕ which the agent cannot
even know ϕ upon reaching x′, then her inability to know “after σ, ϕ” at x shouldn’t count against
the determinism of σ.

As stated above, fσ : X ⇀ X is continuous with respect to τX just in case f−1
σ (U) ∈ τX for

any U ∈ τX . Here’s an equivalent way of stating it (see Prop. 4.1): for any A ⊆ X, if fσ(x) = x′

and x′ ∈ int(A), then x ∈ int(f−1
σ (A)). Interpreting DTMs as models of situations: if, inside the

situation at state x, the action σ will take the agent to a state x′ where she could observe that
she’s in A,35 then she can, in fact, make sufficient observations in x (prior to executing σ) that
allows her to know that executing σ will take her to a world in A. This is not true in the blackjack
example: suppose x is the beginning of Alice’s turn, and x′ is the state after she gets an additional
card which causes her to lose. In x′, Alice can observe that she has lost the game. But there is no
observation she can make in x which guarantees that this will happen: she can’t observe anything
about what the next card will be, so – as far as she can know – getting dealt another card won’t
result in her losing. That is just the nondeterminism of the situation (from Alice’s perspective).
The “uncertainty” inherent to a nondeterministic action can be formally made sense of as the
discontinuity of the interpreting function (equivalently, the refutation of the corresponding axiom
scheme), as claimed. What we have found, then, is that determinism, continuity, and the continuity
axiom scheme all interrelate and characterize each other’s logical structure.

1.6 PDL Program Construction

The final ingredient which we’ll need for our analysis is relational propositional dynamic logic.
Propositional Dynamic Logic (henceforth, PDL) is a simple variety of relational modal logic de-
veloped primarily to reason about nondeterministic computer programs. In particular, PDL can
be utilized to do Hoare-Logic-style reasoning about preconditions and postconditions of programs
(i.e. what’s true before and after executing a computer program). We’ll build on this intuition by
identifying the formal language of PDL with a fragment of the language of agent DTL, and thereby
transfer the interpretation (which, as we’ll see, works out). We will not extensively introduce the

35Recall x′ ∈ int(A) means that there exists an observation O with x ∈ O ⊆ A – an observation consistent with x′

which guarantees the present world is in A.
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technical details of relational PDL, except insofar as we need it as background for our current
goal.36

PDL is a logic conducted in the language LPDL(Σ), which is given by

ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | [σ]ϕ.

Here, as elsewhere, p varies over some set Φ of primitive propositions and σ over some set Σ of
primitive program symbols. We use all the same notational shorthands as before, but additionally
write 〈σ〉ϕ for ¬ [σ]¬ϕ. At first glance, this may appear to be alternate notation for the {©σ}σ∈Σ

fragment of L�©(Σ), with [σ]ϕ playing the role of ©σϕ. Not quite. The semantic relationship
between these languages is somewhat more subtle, as we shall see.

A (Σ-)relational model37 M is a triple (X, {Rσ}σ∈Σ , v), where X is a set, Rσ ⊆ X ×X is a
binary relation for each σ ∈ Σ and v : Φ→ P(X) is a valuation function. The relation Rσ provides
a semantics for [σ] in the usual “Kripke-style” way: (M,x) |= [σ]ϕ iff (M,x′) |= ϕ for all x′ such
that xRσx

′. So we’re justified in regarding such a model as just a model of standard relational
modal logic, with a collection of �-style modalities indexed by Σ. This is made precise with the
following result.

Definition 1.5
Let PDL0 consist of

• All (or enough) tautologies of classical propositional modal logic (over the language
LPDL(Σ))

• The (K) axiom for each modality [σ]38

• The inference rule of Modus Ponens

• For each modality [σ], the inference rule of Necessitation: from ϕ, infer [σ]ϕ.

A theorem of PDL0 is an LPDL(Σ) formula which may be proved from the axioms and rules
of deduction of PDL0, analogously to how we defined for ADTL above.

Proposition 1.3
PDL0 is a sound and complete axiomatization of LPDL(Σ) with respect to the class of Σ-
relational models.

Showing Prop. 1.3 is a standard proof in modal logic, utilizing a canonical model to refute
nontheorems of PDL0.39 However, it’s important to note that this proof relies on a particular
assumption: that there are no relationships “baked in” between the different relations. Notice that
PDL0 treats the modalities [σ] and [σ′] entirely independently: there are no axioms governing how
the truth conditions of [σ] and [σ′] interact, because we interpret them by completely arbitrary
relations Rσ,Rσ′ , and thus there isn’t any particular structural relationship between Rσ and Rσ′ .

40

36A reader unfamiliar with PDL is encouraged to read [16] for more background. We use similar-enough notation
(and explicitly note our use of it enough) that no great confusion should arise.

37It is due to this notion that we refer to “relational PDL” as such. We’re ultimately working towards a contrast
with dynamic-topological PDL, which is what we seek to introduce.

38Replace the � in the statement of (K) in Defn. 1.4 with each [σ].
39This is a generalization of [7, Theorem 4.23]. See the proof of Theorem 3.7, Claim 1 for more on this.
40There are certain relationships between the interpreting relations that we might be interested in (e.g. that Rσ

is always interpreted to be a subset of Rσ′), and, as any standard account of modal logic will explore, there are
certain relationships that can be formally stated in the object language LPDL(Σ). We can impose on our models
the requirement that Rσ ⊆ Rσ′ , but this will lead to additional formulas being validated (in this instance: requiring
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Relational PDL has a particular manner for imposing additional structure, which will become
our central theme: program construction. So far (and particularly for Prop. 1.3), we’ve treated
the set Σ of “program names” as some undifferentiated set of primitives with no internal structure.
But PDL does assume that Σ has a particular form. Specifically, the set Σ of programs used in
standard PDL is given as the closure of a set of primitives under several connectives. Relational
PDL includes 3 ways for combining program symbols:41

• Sequencing : given programs σ0,σ1, form the program σ0;σ1 consisting of “do σ0, then do σ1”.

• Nondeterministic union: executing the program σ0 ∪ σ1 consists of nondeterministically se-
lecting either σ0 or σ1 and performing that action (e.g. “flip a coin. If heads, do σ0. If tails,
do σ1”)

• Nondeterministic iteration: executing σ∗ consists of performing the action σ some nonde-
terministic number of times (e.g. “generate a random natural number n, and then do σ n
times”)

Standard presentations of PDL also include a way of taking a formula ϕ and forming the “test
program” ϕ? which “asserts” ϕ. Together, these form the standard core of PDL, and particular in-
terpretation is given to these “constructed programs”. In this section, we’ll elaborate the relational
semantics for nondeterministic union, before we go on to give dynamic-topological semantics. A
similar development of sequencing and test programs is given in [5], and nonterministic iteration
will be beyond the scope of our work here.42

Definition 1.6
Let Π be some set of primitive program symbols. The set Π∪ is given to be the closure of Π
under combination using ∪:

σ ::= π | σ0 ∪ σ1. (π ∈ Π)

The language LPDL(Π∪) (also written as just L∪PDL when Π is understood) is given by:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | [σ]ϕ. (p ∈ Φ, σ ∈ Π∪)

We refer to the programs denoted by elements of Π as “primitive programs”, and programs
denoted by any other element of Π∪ as “constructed programs”.

More generally, if c is some n-ary function symbol, then we write Πc to denote the closure
of Π under combination with c, i.e. the least Σ such that Π ⊆ Σ and

Σ = Σ ∪ {c(σ1, . . . , σn) : σ1, . . . , σn ∈ Σ} .

Accordingly, we’ll write LcPDL to denote the PDL language over this program set, and Lc�©
for the corresponding agent DTL language.

Rσ ⊆ Rσ′ makes [σ′]ϕ → [σ]ϕ a tautology). Such formulas are not theorems of PDL0, so our completeness result will
not continue to hold for the class of models where we’ve made these kinds of restrictions (PDL0 is not complete with
respect to the class of “Σ-relational models where Rσ ⊆ Rσ′”). So if we want our relational models to possess a richer
structure, but also want to maintain the completeness of our deductive calculus, then we’ll need to add corresponding
axioms to PDL0. This kind of tension between making structural requirements and maintaining completeness is
ubiquitous in mathematical logic.

41These connectives bear strong relation (and resemblance) to standard operations on regular expressions. This
is, of course, no accident. For this reason, the term “regular” is often used in reference to program sets of this form.
We won’t make use of this terminology (or connection), but it is worth noting.

42Though we give semantics for sequencing and nondeterministic iteration as program constructors in Subsect. 2.3.
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This definition showcases how we’ll use the notation to keep track of our languages: the subscript
indicates what modalities are operating on the set of formulas (either PDL for the PDL modalities
[−] and 〈−〉, or �© to indicate we’re working with �, ♦, and many ©s) while the superscript
indicates the available connectives among programs (in this case: just the binary connective ∪).

So we have some syntactic relationships among the program names: if σ and σ′ are program
names, then there’s a program name σ ∪ σ′, σ ∪ (σ′ ∪ σ), and so on. But in order for the syntax to
have meaning, the semantics must back up these relationships. As mentioned above, in an arbitrary
Π∪-relational model there is no particular relationship between Rσ0 , Rσ1 , and Rσ0∪σ1 . But we have
an intended meaning for σ0 ∪ σ1 – the nondeterministic union of σ0 and σ1 – and we desire the
semantics of σ0 ∪ σ1 to reflect this. So we turn our attention to what we’ll call union-models.

Definition 1.7
Let Π be fixed. A union-model M is a Π∪ relational model (X, {Rσ}σ∈Π∪ , v) such that

(x, x′) ∈ Rσ0∪σ1 ⇐⇒ (x, x′) ∈ Rσ0 or (x, x′) ∈ Rσ1

This condition is phrased more compactly as Rσ0∪σ1 = Rσ0 ∪Rσ1 .

Defn. 1.7 implements nondeterministic union, but in a different sense of the word “nondeter-
ministic” than the richer notion of nondeterminism we developed above. In relational PDL, Rσ(x)
is the set of all worlds which could be an outcome of σ at x. So if there are multiple possible
outcomes, then the outcome is “nondeterministic”. So relational PDL gives semantics for non-
deterministic union accordingly: the outcomes of σ0 ∪ σ1 are all the outcomes of σ0 and all the
outcomes of σ1. This notion of “nondeterminism” (there being multiple possible outcomes) doesn’t
have any more elaborate internal structure, whereas our epistemic notion of nondeterminism arises
from a subtle interaction between the agent’s knowledge and the possibilities. We’ll see, ultimately,
that the two can mirror each other nicely.

So there are two perspectives we could take on Defn. 1.7. One perspective – the one suggested
by the phrasing of the definition itself – is that we may view union-models as special Π∪-relational
models, namely the ones whose interpretations of constructed programs obey the above-specified
semantic relationship between Rσ0 , Rσ1 and Rσ0∪σ1 for arbitrary σ0, σ1. But we may also view
it in this way: in order to define a union-model, it suffices to supply a Π-relational model. The
other programs, the constructed programs, have their interpretations completely determined by
the above. So we could even imagine a model transformation sending a Π-relational model M to
the unique union-model MUnion “induced” by M , i.e. the union-model with the same set of worlds,
same valuation, and same interpretation of Π programs as M , but which additionally interprets
Π∪ programs via the definition Rσ0∪σ1 := Rσ0 ∪ Rσ1 . The main thing we wish to note here is the
overall method, namely the semantic “transformation” turning models interpreting Π into models
interpreting Π∪ by “copying” the primitive interpreations and then utilizing structural recursion to
interpret constructed programs. Later on, this will be our central approach, though it will certainly
prove more difficult in the dynamic-topological setting.

Now that we’ve given semantics for interpreting ∪-programs, we conclude our discussion of
relational PDL by extending our PDL0 axioms to axiomatize union-models. As mentioned above,
imposing structural constraints (like Rσ0∪σ1 = Rσ0 ∪Rσ1) cause additional formulas – not provable
from PDL0– to be validated. In this case, those formulas are instances of the (U) axiom scheme.

Definition 1.8
Let (U) be the axiom scheme

[σ0 ∪ σ1]ϕ ↔ [σ0]ϕ ∧ [σ1]ϕ,
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where, unless stated otherwise, ϕ ranges over L∪PDL and the σs over Π∪. We’ll also use in its
equivalent “dual” form:

〈σ0 ∪ σ1〉ϕ ↔ 〈σ0〉ϕ ∨ 〈σ1〉ϕ.

Proposition 1.4
The axiom scheme (U) defines the class of “union-frames”: given a pair (X, {Rσ}σ∈Π∪) where
X is a set and Rσ ⊆ X ×X for all σ ∈ Π∪,43 the following are equivalent:

1. Rσ0∪σ1 = Rσ0 ∪Rσ1 for all σ0, σ1 ∈ Π∪

2. For all valuation functions v : Φ→ P(X),

(X, {Rσ} , v) |= [σ0 ∪ σ1]ϕ ↔ [σ0]ϕ ∧ [σ1]ϕ

for all σ0, σ1 ∈ Π∪ and all ϕ ∈ L∪PDL(Π).

In summary: we have a process for taking arbitrary Π-relational models (representing the
interpretations of primitive programs on the state space), and endowing them with a new construc-
tion, nondeterministic union. This construction is enacted both syntactically (by closing Π under
∪ to get Π∪) and semantically (by putting Rσ0∪σ1 = Rσ0 ∪ Rσ1). The relationship between the
syntactic and semantic extensions is governed by the (U) axiom scheme: (U) picks out precisely
those Π∪-relational structures (i.e. those frames interpreting the extended syntax) which arise via
the semantic extension.

We’ll often refer to (U) as the “classical PDL axiom for ∪” (or variations of this phrase), to
distinguish it from the axiomatization our dynamic topological interpretation of PDL, to which we
now turn our attention.

1.7 Motivation: Dynamic Topolocal Program Construction

Let’s now make the connection between PDL and DTL explicit. We said earlier that the PDL
modalities were designed to reason about the behavior of computer programs. As Fischer and Lad-
ner explain in the introduction to the original presentation of PDL[9], the intended interpretation
of 〈σ〉ϕ is that “σ can terminate with ϕ holding upon termination” (emphasis added). The word
“can” here refers to the possible nondeterminism of the program σ: there could be a variety of
possible outcomes to σ, but at least one of them is a ϕ-world. In the relational semantics, this is our
notion of nondeterminism: Rσ is a relation (and is not required to constitute a partial function),
so for each world x and each program σ, there are perhaps several worlds x′ such that xRσx

′. So it
is taken as primitive that there are multiple possible outcomes to any given action, and our notion
of nondeterminism does not possess any further logical structure.

But we have a more sophisticated notion of nondeterminism at play: the epistemic interpre-
tation of nondeterminism. If σ is “nondeterministic” under this account, that didn’t mean that
there were actually multiple possible worlds that could result from executing σ from x. Indeed, we
assumed for our models that there was some fact of the matter: either σ is not defined at x, or
else there is some unique x′ which is the world resulting from executing σ at x. Semantically, this
corresponded to the stipulation that fσ(x) is a partial function, not just an arbitrary relation. The
notion of nondeterminism, recall, arose from the inability of an agent to know beforehand what
properties hold of the world resulting from executing σ.

In terms of the formal language: suppose both of the formulas ♦©σϕ and ♦©¬ϕ are true at
x. What this says is that the agent cannot come to know whether (or not) ϕ will be true after the

43We’ll call such a pair (X, {Rσ}) a “Π∪ relational frame”.
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execution of σ, at least not prior to actually executing σ. This is rather analogous to the situation
in relational PDL where a single world x would be related to (at least) two distinct other woulds x0

and x1 by Rσ (i.e. xRσx0 and xRσx1) but x0 and x1 disagree on whether ϕ is true. If ♦©σϕ and
♦©¬ϕ both hold, then the agent, regardless of what state of knowledge they’re in, must count it
as a possibility that executing σ would result in a ϕ world, and also as a possibility that executing
σ would result in a ¬ϕ world. In this way, the formula ♦©σϕ plays a similar role as 〈σ〉ϕ: it
expresses the possibility that executing σ would result in a ϕ world (“possibility” in the primitive
sense for PDL, and “possibility, as far as the agent can know” for epistemic DTL).

We can make this connection between 〈σ〉 and ♦©σ official: view LPDL(Σ) as a fragment of
L�©(Σ) by defining 〈σ〉ϕ ≡ ♦©σϕ. Then, it becomes possible to interpret LPDL(Σ) on Σ-DTMs.
What formulas of LPDL(Σ) are validated by Σ-DTMs? Well, the answer is not surprising.44

Proposition 1.5
For any set Π, PDL0 is a sound and complete axiomatization of LPDL(Π) with respect to the
class of all Π-DTMs: for all ϕ ∈ LPDL(Π),

`PDL0 ϕ ⇐⇒ M |= ϕ for all Π-DTMs M

The same axioms which fully captured the logic of Σ-relational models fully captures the logic (that
can be expressed in the more limited language LPDL(Σ)) of Σ-DTMs. One of the main results of
[5] was to articulate the connection between the primitive PDL theories of relational PDL models
and dynamic topological models regarded as models of the PDL language given in Prop. 1.5.

With the connection between relational PDL and agent DTL in mind, let us mention program
construction again . Suppose we had a Π-relational model M in which xRπ0x0 and xRπ1x1, where
x0 6= x1. If we extend M to a union-model MUnion by the definition Rπ0∪π1 = Rπ0 ∪Rπ1 , then

xRπ0∪π1x0 and xRπ0∪π1x1

Hence why “nondeterministic union” is so named: even if π0 and π1 were “deterministic” (in the
sense of having at most one possible outcome world when executed from x), their union, π0 ∪ π1 is
nondeterministic (in the sense of having multiple possible outcomes). Furthermore, consider such
a case where x0 and x1 are not only distinct, but validate different LPDL(Π) formulas as well.
Without loss of generality, say,

(M,x0) |= ϕ and (M,x1) 6|= ϕ.

And therefore we get that (M,x) |= 〈π0 ∪ π1〉ϕ and (M,x) |= 〈π0 ∪ π1〉¬ϕ.

Now to our key question: how can we carry out program construction in the domain of dynamic
topological logic? If I have an arbitrary Π-DTM M, is there a way to transform it to a Π∪-
DTM MUnion where the interpretation of π0 ∪ π1 in MUnion bears the proper relationship to the
interpretations of σ0 and σ1? Specifically, if (MUnion, w) |= 〈σ0〉ϕ and (MUnion, w) |= 〈σ1〉¬ϕ, can
we have it so that

(MUnion, w) |= 〈σ0 ∪ σ1〉ϕ ∧ 〈σ0 ∪ σ1〉¬ϕ,

and thereby faithfully mimic relational PDL’s nondeterministic union in agent DTL?

We saw with relational models that we could define MUnion to have the same state space and
{Rπ}π∈Π as M , and could add interpretations for constructed programs via Rσ0∪σ1 = Rσ0 ∪ Rσ1 .
But we cannot just copy this definition DTL: if we want ‖σ0 ∪ σ1‖MUnion to be a partial function

44A version of Prop. 1.5 – with the additional assumption of seriality – is proved as [5, Thm. 2]. The complete-
ness proof presented here is a novel one, more in line with the implementation of the program constructor U∞ in
Subsect. 2.3.
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(which is part of the definition of what it means for MUnion to constitute a Π∪-DTM), then it does
not suffice to put

‖σ0 ∪ σ1‖MUnion = ‖σ0‖M ∪ ‖σ1‖M .

Rather, we must encode the nondeterminism in a more subtle way: by structuring the topology (and
with it, the agent’s epistemic capabilities) so that the interpretations of σ0∪σ1 can be discontinuous
(nondeterministic) even when the interpretations of σ0 and σ1 are continuous (deterministic). This
turns out to be quite an involved task, and will occupy our attention for the remainder of this work.



Chapter 1

Basic Theory of Program
Constructors

To inform what kind of mathematical setup is required to enrich dynamic topological models with
nondeterministic program constructors, it is helpful to consider the philosophical meaning of such
a procedure. If a DTM can be interpreted as modeling a dynamic epistemic situation, then what
kind of scenario is modeled by a DTM endowed with program constructors? What does it mean if
the agent is able to execute actions of the form σ0 ∪ σ1? We take up this question now, and we’ll
find that the answer will lead us to the abstract definition of “program constructor” for dynamic
topological models.

As mentioned above, nondeterministic union will be our primary example. However, the defini-
tion we provide will be much more general, and we provide several other examples. Our goal here is
not simply to introduce a way to define nondeterministic union in the dynamic-topological setting,
but furthermore to use this task as an occasion to significantly develop the theory of DTL. To this
end, the present chapter (as well as Chapter 2) will be presented in a greater level of generality
than is strictly necessary, and will be accompanied with enough mathematical theory to facilitate
this more general view. We develop the specific details for nondeterministic union (and a simplified
version of union we’ll call “OR”), and leave similar developments of other program constructors to
future work.

2 Program Constructors

2.1 Intuition

To begin, consider the following situation.1

It’s December 14th, 1903, and two brothers, Wilbur and Orville Wright, are on the
cusp of becoming the first people to successfully build and fly an airplane.2 They have
been working for years on their prototype flying craft, and today might be the day they
make history. To conduct a test flight, one of them needs to be in the plane and one
of them on the ground. If today’s flight is successful, then whichever brother was in
the plane that day will forever be the first person ever to fly a plane, whereas the other
brother will merely watch history’s first flight from the ground (despite his roughly-equal
contribution to the effort). Unable to decide which of them gets to (maybe) become the

1Taken (with some artistic license) from [1] (www.nps.gov/wrbr/learn/historyculture/thefirstflight.htm).
2That’s heavier than air, self-propelled, capable of making sustained flights, etc.

https://www.nps.gov/wrbr/learn/historyculture/thefirstflight.htm
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first pilot in human history, they flip a coin. Wilbur wins the toss, and gets to operate
the craft on today’s test flight.

This is a story of human utilization of technology, in two ways. In addition to the obvious use
of technology by the Wright brothers (using tools and machines to fashion a flying contraption),
they are utilizing a much older, much more familiar technology: a coin flip. As we’ll see, the latter
is actually much more curious: the brothers use hammers to manipulate metal, knives and saws to
manipulate wood, but the coin they use to manipulate their own ability to predict the future.

Part of the purpose of a coin flip is to produce an arbitrary result, with no “reasoning” behind
the outcome. If I’m flipping a coin to resolve a binary decision, I’m doing so because I’ve exhuasted
other considerations for resolving the question and am looking for the decision to be made for
me. But, for some applications of coin flips (e.g. when a hotly-contested competition ends in a
tie, and the coin is brought in to break the tie), we demand something more: the decision should
be arbitrary. If a referee tosses a coin to decide the winner of a deadlocked game, then nobody
can (reasonably) question whether the referee’s personal biases in favor of one team affected the
decision: everyone understands that basic precautions (e.g. seeing that the coin comes from an
unbiased source, allowing the teams to inspect the coin, conducting the flip for all to watch, etc.)
make it virtually impossible to rig a coin flip. Therefore, even if the referee wanted to fix the coin flip
in favor of one team or the other, these kinds of constraints seem to make it impossible to execute
such a fix. The result is arbitrary. Clarifying this notion of “arbitrariness” in its totality (and
related questions of whether it’s possible to “fix” a given result to a process) will lead us to much
more complex questions about causality, counterfactuals, and the like, which we don’t want to get
into here. But we can articulate epistemic nondeterminism as at least one (apparently necessary)
aspect of a properly-conducted coin flip: at the very least, nobody could have known what the
result would be before the coin was flipped. If someone was able to possess such knowledge (e.g.
the referee was able to know for a fact that the coin would come up heads), then clearly something
is afoot. Thus, while epistemic nondeterminism (viewed as a property of the coin-flipper’s capacity
for knowledge in such a situation) does not appear to be a sufficient characterization of what makes
a coin flip a coin flip, it is a necessary property.

To see this, let’s return to the example of the Wright brothers. If either brother knew enough
to predict the outcome of the flip (the flip deciding which brother flies today), then the entire
exercise would be effectively pointless. For instance, let’s say Wilbur tossed the coin, but gave
his brother Orville the pick of “heads” or “tails”. If Orville somehow knew in advance which way
the coin would come up, 3 then the intention behind flipping the coin – arbitrarily deciding which
of them gets to fly today – is silently defeated: Orville must have fixed the decision somehow
(how else would he know the result beforehand?), and it is absolutely not arbitrary. On the other
hand, if Wilbur knows the outcome in advance,4 the decision is again not arbitrary. In neither of
these cases are the brothers faithful to their original impetus for the coin flip. And certainly if the
brothers find themselves in some complex epistemic setup atop these more basic “foreknowledge”
situations,5 then the flip itself is still pointless. The coin has its intended function only if it creates
a particular arrangement of knowledge, specifically one where neither brother is able to predict the
outcome of the coin flip.

The previous paragraph could be more succinctly expressed as: coin flips are supposed to be
epistemically nondeterministic. It’s worth emphasizing that it’s epistemic nondeterminism at play

3Say, he anticipated the situation and quietly substituted Wilbur’s fair coin with a coin with two “heads”
4Suppose he is cheating with the coins, e.g. he has a two-headed coin and atwo-tailed coin, and will flip one based

on whether Orville calls heads or tails, thereby allowing him to ensure absolutely that he’ll win the toss
5E.g. Wilbur knows that Orville knows that Wilbur knows the outcome of the flip in advance, but Orville does

not know that Wilbur knows that Orville knows that Wilbur knows the outcome.
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here: it’s certainly not clear that a coin flip is “nondeterministic” in any metaphysical sense,6 or at
least we don’t need it to be. The above story about the brothers and their engagement with each
other and with the coin makes total sense, even if the coin toss itself is “ultimately” deterministic.
It presents no obstacle to the foregoing analysis if there is ultimately some fact of the matter about
which side of the coin comes up; we just require that the brothers be ignorant of this fact. Or
rather, we require that the brothers be necessarily ignorant about this: that they be unable to
know which way the coin will come up.7 Henceforth, when we refer to a “coin toss”, we will allow
(indeed, assume) that there is some ultimate fact of the matter about which way the coin comes
up, but we will assume that the toss is “honest”: either outcome is a possibility (from the epistemic
standpoint of the agent in question), and the agent cannot know in advance which will transpire.

Let’s talk about this using the agents-in-situations language from before. We’ll understand
“decisions by coin flip” in the following manner: our agent8 will always be deciding between two
courses of action. More precisely, our agent will be considering two actions σ0 and σ1. Then coin
flipping manifests as a binary operation on actions: if our agent has access to a coin, then she is
allowed to instead perform the action σ0∪σ1, which consists of “flip a coin. If it comes up heads, do
σ0. If tails, σ1”. For our purposes, we do not allow the agent to ‘disobey’ the coin: we do not allow
her to, say, flip the coin and then decide to ignore it and do σ0 anyways, or forget the whole thing
and default to some unrelated σ2, or various other modifications. I see no reason that this more
complex behavior couldn’t be modelled in (some modification of) the framework we’ll develop, but
we’ll exclude this for simplicity. When the agent performs σ0 ∪ σ1, she flips the coin and faithfully
carries out either σ0 or σ1, according to the outcome of the flip.

The introduction of a nondeterministic device (in this case, the coin) allows the agent to
nondeterministically combine actions. She can take any actions (deterministic or not) σ0 and σ1,
and form the action σ0 ∪ σ1. The resulting action σ0 ∪ σ1 will be nondeterministic: the agent
doesn’t and cannot know whether the flip will come up heads or tails, at least until she does this
flip. Consequently, she cannot know in advance whether σ0∪σ1 will end up being σ0 or σ1, and thus
cannot know exactly which outcomes to expect from this compound action (except in degenerate
cases, e.g. σ0 = σ1). σ0 ∪ σ1 could end up being σ0, and produce whatever results σ0 produces, or
it could be σ1 and have σ1’s results. These are the main structural components to a coin-flipping
situation: σ0 ∪ σ1 ultimately consists of either σ0 or σ1, but there’s no way to know which one in
advance.

Our mathematical development of this idea will rely on the following observation. When a coin
is flipped, there is some fact of the matter about which way the coin will come up: the coin is subject
to physical laws which fully determine its outcome. But our agent is not in a position to know this
outcome beforehand.9 But, as the agent conceives of it, it’s equally possible that the coin flip has

6One could perhaps tell a coherent story about how the macroscopic outcome of the coin flip is determined by the
outcomes of a fantastic number of microscopic quantum events, and thereby be able to claim that there is no single,
fixed outcome of the flip until it actually occurs. We don’t make an attempt to evaluate such accounts.

7This is a simplifying assumption. A modification of the present account where there’s more internal structure
to the epistemology of the coin flip – structure the relevant agent(s) can know about and perhaps exploit – certainly
sounds interesting, and could be fruitful further work.

8We’ll restrict ourselves to considering a single agent, who is both the flipper of the coin and the one reasoning
about possible outcomes. The ability of an agent (e.g. Orville) to reason about another agent (e.g. Wilbur) flipping
a coin is an added layer of complexity which we don’t address here.

9If the flip is conducted “honestly” (e.g. no double-headed coin), it would be tremendously hard to predict
its outcome and would undoubtedly require special equipment. Perhaps if the agent had measured all the minute
differences in density of the coin and had set up a machine to measure the coin’s height, velocity, angular momentum,
etc. at the moment of the flip, then perhaps it could crunch the numbers fast enough (e.g. using Newtonian
mechanics) to predict the outcome. This is just to further emphasize the point that our notion of nondeterminism is
dependent on the agent’s epistemic abilities: if the agent has access to such a coin-flip-predictor machine, then coin
flipping is indeed deterministic. We assume they do not.
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the opposite outcome. We make sense of this by stipulating two worlds of the situation (call them w
and w′) which are identical in every respect, except for the outcome of the next coin flip performed
by the agent. More precisely, σ0 ∪ σ1 will end up being σ0 in w but σ1 in w′, but this is the only
difference. In particular, there’s no observation the agent could make to indicate they’re in w but
not in w′ (or vice versa). So when we say that “the agent cannot know whether the flip will come
up heads or tails”, this just means that they find themselves in such an w or w′ (but can’t know
which). We might say that w is a “0-world” and w′ a “1-world”, since a coin flip comes up heads
in w (tails in w′), so executing an action of the form σ0 ∪ σ1 gets interpreted to σ0 (respectively,
σ1). Accordingly, interpreting σ0 ∪ σ1 in DTMs will consist of making “duplicates” of worlds, and
making one these twin worlds a 0-world and the other a 1-world, and rigging up the topology to
encode the fact that the agent can’t tell them apart. Indeed, we will need to further multiply the
state space, in particular to account for multi-flip “nested” actions, e.g. (σ0 ∪ σ1) ∪ (σ2 ∪ σ3) and
the like.

One final comment we’ll add to this is that σ0 ∪ σ1 should be at least as epistemically nonde-
terministic as σ0 and σ1, which are themselves allowed to be nondeterministic. Returning to the
Wright brothers example, it turns out that December 14th, 1903 wasn’t the day. On that day,
Wilbur won the toss but the flight was not a success. So Orville, the loser of the coin toss, even-
tually became history’s first pilot: after the brothers repaired the craft, it was Orville’s turn to fly
on December 17th. That was the historic flight. So consider everything from Wilbur’s perspective:
let σ0 be the action “attempt to fly the craft on Dec. 14”, σ1 be the action “stay on the ground
and help your brother fly on Dec. 14”, and let ϕ be the proposition that Wilbur is the first pilot in
human history. Then Wilbur did indeed execute σ0 ∪ σ1. The fact of the matter was that the coin
came up heads, so Wilbur did σ0 (flew on December 14). Unbeknownst to him, the outcome was
him not becoming history’s first pilot. But this wasn’t ultimately because of the coin flip: he won
the coin flip! Wilbur wanted to do σ0 because he was ignorant of σ0’s impacts: he thought “after
σ0, ϕ” held (he thought that flying on December 14th would make him the first pilot in human
history). But actually, it was the case that after σ0, ¬ϕ. So, under this reading, the following
formulas are validated:

©σ0¬ϕ (Flying on Dec. 14 won’t make Wilbur the first pilot)

♦©σ0 ϕ (As far as Wilbur could know, flying on

Dec. 14 could make him the first pilot)

©σ0ψ → ♦©σ0∪σ1 ψ (The coin could come up heads)

©σ1ψ → ♦©σ0∪σ1 ψ (The coin could come up tails)

©σ0ψ → ©σ0∪σ1ψ (The coin did come up heads.)

The latter three formulas include a metavariable ψ which could be any proposition. So, for instance,
we labelled ©σ0ψ → ♦©σ0∪σ1 ψ as “The coin could come up heads” because the possibility of
heads (as far as Wilbur can know) means that the actual result of σ0 is a possible result of σ0 ∪ σ1

(again, as far as Wilbur can know). And so if ψ is true upon the execution of σ0 (whatever ψ is),
then, as far as Wilbur can know, ψ could be true upon the execution of σ0 ∪ σ1. Likewise for the
formula below it. So the conclusion is that there’s some epistemic nondeterminism due to the coin
flip itself, but the actions being union-ed together may themselves be nondeterministic. With that,
we’ve established all the requisite intuitions and can proceed to incorporate all these considerations
into a mathematical framework.



Semantics of Nondeterministic Construction 34

2.2 Definition

In relational PDL, we saw that we could augment Π-relational models to Π∪-relational models
(specifically, union-models) using the definition Rπ0∪π1 = Rπ0 ∪ Rπ1 . The Π∪-relational model
MUnion produced from M = (X, {Rπ}π∈Π , v) via this definition had the same set of points, same
valuation, and same interpretation of Π as M ; it just additionally interpreted ∪-programs. We
saw that the same cannot be done so easily with Π-DTMs: in order to produce a transformation
sending a Π-DTM M to a Π∪-DTM MUnion which interprets σ0 ∪ σ1 as nondeterministic union, we
need a more mathematically-elaborate setup.

As mentioned above, we will do this by duplicating the state space: in the coin-flip example, we
had the worlds w and w′ which were alike in every way, except for the result of a coin flip. Moreover,
the nondeterminism of a coin flip was achieved by making these worlds indistinguishable. So if we
want MUnion to consist of the same situation as M but with a (nondeterministic) coin flip available,
then we could (say) make the states of MUnion to be pairs (x, γ) where x is a world of M (saying
what M-state the agent is in), and γ is either 0 or 1, encoding the outcome of the next coin flip.
If the agent undertakes an action which does not involve flipping the coin (i.e. an action denoted
by an element of Π), then we ignore γ. But we can interpret σ0 ∪ σ1 to be σ0 in (x, 0) and σ1

in (x, 1). From there, it’s just a matter of ensuring that (x, 0) and (x, 1) are “indistinguishable”
(topologically, and in terms of satisfying L�©(Π) formulas), which, recall, was crucial to thinking
of this as a model of coin-flipping. Let us codify this process in much greater generality, and later
develop this idea of MUnion as a specific instance.10

Definition 2.1 (Model-to-Model Program Constructor)
Let n ∈ N be given. An (n-ary) program constructor C interpreting an n-ary function
symbol c consists of a topological space (Γ, τΓ) and a rule11 which assigns to each Π-DTM
M = (X, τX , {fπ}π∈Π , V ) a Πc-DTM12 MC such that

•
∣∣MC

∣∣ = X × Γ: the states/worlds of MC are pairs (x, γ) for x a world of M and γ ∈ Γ;

• the topology of MC is the product topology of τX and τΓ;

• primitive programs don’t touch Γ: for all π ∈ Π, all x ∈ X, and all γ ∈ Γ,

‖π‖MC (x, γ) = (fπ(x), γ)

• and the valuation ignores Γ: for all p ∈ Φ, all x ∈ X, and all γ ∈ Γ,

(x, γ) ∈ JpKMC ⇐⇒ x ∈ JpKM.

We’ll often refer to MC as the “C-augmentation” of M, and refer generically to “C-augmented
DTMs”. We’ll often refer to Γ as the “state space of C” (and – especially if τΓ is the indiscrete
topology – the “hidden state space”), and refer to elements γ ∈ Γ as “constructor states” or “hidden
states”.

Let’s indicate the function of each part of this definition, but instead of talking specifically
of “coin flips” (and their symbolic stand-in, ∪), we’ll articulate this in terms of more general

10We will actually have several “program constructors” which encode coin-flipping with binary digits like this. To
avoid confusion, none of them will be denoted MUnion.

11We could, if desired, explicitly define this “rule” as a class function on the proper class of all DTMs (or as a class
function from the class of Π-DTMs into the class of Πc-DTMs for some fixed Π). This might aid our understanding
of the phenomenon of program construction in more formal detail, but I don’t believe we rely on such “foundational”
considerations in any substantive way to deliver any technical results.

12Recall Πc is the closure of Π under combination with the n-ary function symbol c, as mentioned in Defn. 1.6.
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“nondeterministic devices” which take several actions σ1, . . . , σn as arguments, and combines them
into some action c(σ1, . . . , σn). What “doing c(σ1, . . . , σn)” consists of will depend (in general)
on the interpretations of σ1, . . . , σn in the present state, as well as properties of the present state
(especially the Γ state). The reader may find it helpful to review some of the examples below in
conjunction with this explanation, and see some basic ways we can instantiate this (admittedly
quite abstract) definition.

• X is the state space of the original situation, and Γ is the private state space of the “device”
we’re introducing into this situation. So, as mentioned above, states in the “augmented”
situation consist of pairs (x, γ): x says what state of the original scenario our agent is in,
and γ indicates what state the device is in. This is why the state space of this new DTM is
X × Γ, the set of all such pairs.

Throughout, we’ll informally describe the set X × Γ as “Γ-many copies of each world of X”
and describe (x, γ) as “a copy of x in MC”. This is to reflect our intuition that MC interprets
the same situation as M (only with constructed programs now also possible), and a world
(x, γ) of MC represents the world x of M where additionally the “device” is in state γ. We’ll
invest some effort to showing how the logic of augmented DTMs reflects this relationship.

• Likewise with the topology: the product topology of τX and τΓ is generated by open sets of
the form U × V , for U ⊆ X open in τX and V ⊆ Γ open in τΓ. Roughly, this corresponds
to the assertion that “observations” in our augmented situation MC rule out some M-states
(X \ U) and rule out some Γ-states (Γ \ V ), in that the only worlds considered possible are
those (x, γ) ∈ X×Γ where both x ∈ U and γ ∈ V . This establishes the basis of the topology
for our augmented situation, and then the preceding comments apply.

Defn. 2.1 is stated to allow for program constructors to have varying levels of ‘epistemic
opacity’, as measured by the coarseness of the topology. For the purposes of this work,
we only consider program constructors with indiscrete topologies, i.e. τΓ = {∅,Γ}. This
corresponds to the agent having no ability to reason about what the Γ-state is from within
the scenario: no observation could rule out any Γ-state. In the coin-flip example above, we
were working with Γ = {0, 1}, corresponding to the two possible outcomes of a flip. For such
a program constructor, we use the indiscrete topology to indicate that the agent does not and
cannot have any idea whether the Γ state is 0 or 1, i.e. whether the next flip will be a heads.

• The functions encode precisely the intuitions we had about how a device might utilize a
private state space. If the current state is (x, γ) and we’re seeking to execute π ∈ Π, then we
don’t need the private state space – we can execute π in the same manner as in the original
DTM, and leave the private state untouched. However, if we need to execute a constructed
program c(σ1, . . . , σn), then this is precisely what the augmentation is for. The definition
does not constrain at all what ‖c(σ1, . . . , σn‖MC can be: all that the definition requires is
that there’s some way of defining it13. But usually (as we’ll see in the examples below) the
interpretation of c(σ1, . . . , σn) will depend systematically on the state and the interpretations
of σ1, . . . , σn.

• Finally, the valuation, as noted, does not regard the Γ state, and decides the value of primitive
propositions in terms of the M-state. In the examples we develop below, we don’t want
LPDL formulas (and, in particular, primitive propositions) to be able to pick up hidden state
variation. Later in this chapter (and in the next), we shall pay a great deal of attention to
this point.

13Which can, in general, depend on the DTM M it’s applied to, the M-state, the Γ-state, and the arguments
σ1, . . . , σn in arbitrary – and perhaps pathological – ways.
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The point of this definition is not to constrain too much the class of objects we’re considering.
Undoubtedly, the definition of what constitutes a “program constructor” is sufficiently broad to
admit all manner of bizarre cases and poorly-behaved instances (much like other such abstract
definitions, e.g. of a topological space). Accordingly, we will be limited in how much we can say
about program constructors in full generality (although, as the following development will hopefully
show, there is a good deal we can say). The intention with this statement is rather to establish
a basic framework and terminology for approaching this topic. The real interest in our analysis
will be the class of special cases we begin to develop – my hope (and suspicion) is that carving out
special classes and compelling examples of program constructors will prove to be a quite fruitful
avenue of inquiry. Let us initiate this study by laying out the examples which we’ll focus on for
the remainder of the present work.

2.3 Examples

We devote the rest of this section to listing several examples. We only will develop a few of these
examples in greater detail, but likely each of them would prove interesting if examined further.
Throughout, let M = (X, τX , {fπ} , V ) be an arbitrary Π-DTM.

Example 2.1
The 0-ary program constructor SKIP (augmenting Π-DTMs to Πskip-DTMS, where Πskip =
Π ∪ {skip}) has trivial state space (Γ = {?}, τΓ = {∅,Γ}), and interprets:

‖skip‖MSKIP (x, ?) = (x, ?)

SKIP is a deterministic program constructor, because all constructed programs (i.e. just skip
itself) are deterministic if their arguments are (skip takes 0 program arguments). We often
suppress the unnecessary ? parameter, and just act as if M and MSKIP have the same state
space (in which case ‖skip‖MSKIP (x) = x).

For another program constructor C, we might write C + SKIP to denote the program
constructor which behaves exactly like C (and has the corresponding state space and such),
but produces a Πc ∪ {skip}-DTM instead of a Πc-DTM, and interprets skip as the identity
function.14

Example 2.2
Pulling from [5, Section 4], we introduce the program constructor SEQ of sequencing. We write
Πseq for the program set given by the grammar

σ ::= π | σ;σ′

The program σ;σ′ is pronounced “σ, then σ′”. As with SKIP, SEQ is a deterministic program
constructor (in the sense of not needing a Γ state space), so we can formally put Γ = {?} but
informally pretend that MSEQ and M have the same state space. For any M and any x ∈ |M|,∥∥σ;σ′

∥∥
MSEQ (x) = (

∥∥σ′∥∥
MSEQ ◦ ‖σ‖MSEQ)(x)

Note the order of composition is such that we do σ first, then σ′. If either ‖σ‖MSEQ (x) is
undefined, or ‖σ′‖MSEQ (‖σ‖MSEQ (x)) is undefined, then ‖σ;σ′‖ is undefined at x.

Example 2.3
There are two nondeterministic union program constructors, Uω and U∞, which augment
Π-DTMs to Π∪-DTMs.

Uω is defined by

14This will come in handy later.
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• Γ = {0, 1}∗, the set of all finite-length strings of 0s and 1s. We write ε for the empty string
and, where necessary, write γ1

_γ2 or γ1γ2 for the concatenation of two such strings.

• τΓ is the indiscrete topology, {∅,Γ}

• In MUω, the constructed program σ0 ∪ σ1 is interpreted by

‖σ0 ∪ σ1‖MUω (x, ε) is undefined

‖σ0 ∪ σ1‖MUω (x, 0s) = ‖σ0‖MUω (x, s)

‖σ0 ∪ σ1‖MUω (x, 1s) = ‖σ1‖MUω (x, s)

Uω has the advantage of being more tractable (its state space Γ is countable, for instance,
which will make it easier to capture its essential logic), but the presence of the ε (meaning that
σ0 ∪ σ1 could be undefined even if σ0 and σ1 are both defined) can strain our interpretation of
∪ as coin-flipping. This possibility perhaps makes more sense if we think of ∪ as “querying a
source of random bits” (e.g. implemented on a computer), which could conceivably run out of
randomness.15

The opposite choice of tradeoffs is made with U∞:

• Γ = {0, 1}N, the set of all infinite-length strings of 0s and 1s.

• τΓ is the indiscrete topology, {∅,Γ}

• In MU∞, the constructed program σ0 ∪ σ1 is interpreted by

‖σ0 ∪ σ1‖MU∞ (x, 0s) = ‖σ0‖MU∞ (x, s)

‖σ0 ∪ σ1‖MU∞ (x, 1s) = ‖σ1‖MU∞ (x, s)

So we do not need an ε case – there are always enough bits (which makes things somewhat
cleaner, mathematically and philosophically). The downside is that Γ is now uncountable, and
will prove difficult to fully capture using a finitary modal logic.

Example 2.4
In addition to Uω and U∞ (which interpret all of Π∪, including arbitrarily-nested ∪’s), we
introduce a family of program constructors we call OR, which only allow for finite-nesting of
∪s. To remind ourselves of this, we use the symbol or instead of ∪.

More formally: for each n ∈ N, we define the program set Πor n by recursion as follows.

Πor0 = Π

Πor(n+1) = Πor n ∪
{
σ or σ′ : σ, σ′ ∈ Πor n

}
So, for instance, if π, π′, π′′, π′′′ ∈ Π, then Πor1 contains πorπ′ but does not contain (πorπ′)orπ′′.
The latter is contained in Πor n for n ≥ 2, since the or’s are doubly-nested. We’ll simply write
Πor for Πor1.

The OR program constructor, which augments Π-DTMs to Πor-DTMs, is given by:

• Γ = {0, 1},
15Or perhaps the agent attempts to flip the coin, but the flip itself fails (e.g. the agent doesn’t catch the coin and

it rolls into the sewer)?
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• τΓ = {∅,Γ} (the indiscrete topology),

• For primitive programs π0, π1,

‖π0 or π1‖MOR (x, 0) = ‖π0‖MOR (x, 0)

‖π0 or π1‖MOR (x, 1) = ‖π1‖MOR (x, 1)

Note that π0 or π1 is always defined whenever π0 and π1 are (unlike Uω), but nesting of or’s is
disallowed, since we only have one “random bit” to resolve coin flips with.

We also define OR1,OR2,OR3, . . ., which allow for bounded nesting. For a set A and a
natural number n, define A≤n to be the set of all strings of elements of A, of length ≤ n. For
instance,

{0, 1}≤2 = {ε, 0, 1, 00, 01, 10, 11}
This allows us to define OR n for n ≥ 1:

• Γ = {0, 1}≤n

• τΓ = {∅,Γ}

• For any σ0, σ1 ∈ Πor(n−1),

‖σ0 or σ1‖ (x, ε) is undefined

‖σ0 or σ1‖ (x, 0s) = ‖σ0‖ (x, s)

‖σ0 or σ1‖ (x, 1s) = ‖σ1‖ (x, s)

Note that OR and OR1 are different: OR1 also has ε as a Γ-state, and therefore ‖σ0 or σ1‖MOR1

can be undefined even if ‖σ0‖MOR1 and ‖σ1‖MOR1 are defined, unlike with OR.

Example 2.5
We may define a unary program constructor STAR, which augments Π-DTMs to Πstar-DTMs,
where Πstar is given by

σ ::= π | σ∗.
The intended interpretation of σ∗ is “do σ a nondeterministic number of times”, and is often
known as “nondeterministic iteration” for this reason. Analogously to ∪, we can define several
different program constructors giving semantics for this, with different properties about nesting.
We’ll define the ∞ version, STAR∞ here; the other versions (STARω, STAR, STAR1, STAR2,
etc.) can be given analogously.

STAR∞ is defined by:

• Γ = NN, the set of all (countably) infinite-length strings of natural numbers.

• τΓ is the indiscrete topology, {∅,Γ}

• In MSTAR∞, the constructed program σ∗ is interpreted by

‖σ∗‖MSTAR∞ (x,N_s) = ‖σ‖NMU∞ (x, s) = (‖σ‖MU∞ ◦ ‖σ‖MU∞ ◦ · · · ◦ ‖σ‖MU∞)︸ ︷︷ ︸
N

(x, s)

In words: in order to interpret σ∗, pull the first element N ∈ N from the Γ-state (which is an
endless stream of natural numbers), and perform σ, N times (if defined) from (x, s) – the state
after we’ve removed N from the head of the stream.
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3 Basic Theory of Program Constructors

3.1 General Program Constructors

Now that we have established the framework of program constructors and introduced our main
examples, we turn our attention to understanding how such objects operate. Since program con-
structors are things which transform DTMs, and DTMs are models of a formal language, our
analysis will naturally focus on how this transformation is reflected in the interpretation of this
language. In particular, we want to understand how MC ’s interpretation of Lc�© is a function of
(a) the structure of how C operates, and (b) how M interprets L�©. There are a variety of ways
of grasping this, which we will be interested to explore.

As mentioned above, the notion of a “program constructor” is broad enough to admit a quite
diverse array of constructions. Therefore, if we want to say anything meaningful about “how C
operates”, we will need to focus on specific program constructors, or at least more specific classes
of program constructors. Subsect. 3.2 and Subsect. 3.3 will focus on the theory of Uω and U∞
specifically (and Chapter 2 will mainly use those examples and OR). However, the logical properties
of a C-augmented DTM MC rely heavily on its underlying Π-DTM, M. In this subsection (and
more throughout Chapter 2) we will develop this connection in detail.

Let’s begin by establishing a definition which will prove convenient.

Definition 3.1
Let Σ be a set and M = (X, τX , {fσ} , V ) a Σ-DTM.

• The L�©(Σ)-theory of M, written Th�©(Σ;M), is defined by:

Th�©(Σ;M) := {ϕ ∈ L�©(Σ) : M |= ϕ}

• For any x ∈ X, the L�©(Σ)-theory of x, written Th�©(Σ;M, x), is defined by:

Th�©(Σ;M, x) := {ϕ ∈ L�©(Σ) : (M, x) |= ϕ}

We make several modifications on this notation:

• When some Π is understood as fixed in the background, Th�©(M) will mean Th�©(Π;M),
and likewise for Th�©(M, x).

• Superscripts indicate constructed programs: we’ll write Thc�©(M) to mean Th�©(Πc;M).

• ‘PDL’ subscript indicates use of LPDL instead of L�©: we’ll write ThPDL(M) for the
set of those ϕ ∈ LPDL such that M |= ϕ.

This definition doesn’t really introduce any new material to our theory, but rather supplies us a
convenient notation. Many of the claims below will be phrased as an equality between the theories
of two different models, or two different points within one model, or points in different models. The
theory of a model (or of a point of a model) tells us everything the language “has to say” about
that point. If, for instance, two very different models have the same theory in some language,
then we might say that the language “cannot tell them apart” or “cannot express their difference”.
As is usual in mathematical logic (generally speaking), the ability of various formal languages to
articulate the similarities and differences between different mathematical structures will be a key
focus.

We use this notation to state some basic results of program constructor theory.
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Proposition 3.1
For every Π-DTM M, every world x ∈ |M|, every program constructor C, and every program
constructor state γ ∈ Γ,

Th�©(Π;M, x) = Th�©
(
Π;MC , (x, γ)

)
Notice that this is about the primitive theory of these DTMs, i.e. those formulas which express
the properties of how Π-programs work.16 What this says is that the language L�©(Π) cannot
express the difference between a world x of M and any of the “copies” (x, γ) of x in MC . Thinking
of MC as the same situation as M (and (x, γ) the same state as x) but with more available actions,
this makes sense: if we’re not considering any of the additional actions (no L�©(Π) formula says
anything about constructed programs), then there should be no difference.

As corollaries, we can get that this “theoretical equivalence” also holds globally for these DTMs.

Corollary 3.1.1
For every Π-DTM M and every program constructor C,

Th�©(Π;M) = Th�©
(
Π;MC

)
.

And furthermore we can easily see that (x, γ) and (x, γ′) are no different when it comes to L�©(Π).

Corollary 3.1.2
For all M, C, x, γ, γ′,

Th�©(Π;MC , (x, γ)) = Th�©(Π;MC , (x, γ′))

This latter result illuminates better how augmented situations work: if the agent is not using the
device we introduce, then it doesn’t matter what state the device is in. In Subsect. 2.1, we said
we’d make sense of coin-flipping as the agent being in one of two states which are alike in every
respect (and indistinguishable to the agent) except for the outcome of coin flips. This result is
precisely what we meant by “alike in every respect”: they have the same primitive theories.

Finally, let us connect this study of program constructors to the discussion of Subsect. 1.5
about determinism and continuity. Recall that actions π interpreted as continuous partial func-
tions were deemed deterministic, whereas nondeterminism corresponded to discontinuity. To begin
understanding how this notion interacts with the process of program construction, we prove that
program constructors don’t make primitive programs more or less deterministic than they already
were.

Proposition 3.2
Let M be a Π-DTM, C a program constructor, and π ∈ Π.

‖π‖M is continuous (open) iff ‖π‖MC is continuous (open)

Though we don’t develop it further here, the property of “openness” is an interesting one for the
interpreation of programs to have. [5] interprets openness epistemically as “perfect recall”, and
occasionally requires it for various constructions. Part of our reason for including it here is to show
that the program construction is, in general, compatible with such requirements. We also include
it because the interesting duality between continuity and openness – see the proof of Prop. 3.2 in
the appendices.

So the results of this subsection can be summarized as “program constructors faithfully copy the
interpretation of primitive programs”. For all intents and purposes, M and MC interpret primitive

16Indeed, M is a Π-DTM, so those are the only kinds of programs it interprets.
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programs the same way.17 This is true of every program constructor, without qualification. With
this established, our focus turns to understanding how specific program constructors interpret
constructed programs against this “faithful copy” of the primitive dynamics.

3.2 Special Program Constructors

We described the intended functionality of a coin-flip as follows: doing “flip a coin. If heads, do
σ0; if tails, do σ1” (i.e. doing σ0 ∪ σ1) ultimately consists of either doing σ0 or doing σ1, but the
agent cannot know in advance which one. We can split this description into two criteria:

1. σ0 ∪ σ1 is ultimately either σ0 or σ1

2. The agent cannot know which one (as far as she can know, both are possible).

Our claim is that Uω and U∞ produce DTMs which satisfy these desiderata. We start with the
second one.

Proposition 3.3
Let C be either Uω or U∞ and suppose M is some Π-DTM, w a world of MC , ϕ an L∪�©
formula, and σ0, σ1 ∈ Π∪ such that (MC , w) |=©σ0ϕ but (MC , w) |=©σ1¬ϕ. Then,

(MC , w) |= ♦©σ0∪σ1 ϕ ∧ ♦©σ0∪σ1 ¬ϕ.

Let’s interpret this epistemically: suppose agent A is in a situation, and moreover has a coin
which she can flip to make arbitrary binary decisions. Then, if it’s the case that doing σ0 would
result in ϕ being true but doing σ1 would result in ϕ being false, then, as far as A can know, it’s
possible that doing σ0 ∪ σ1 could result in ϕ being true, or could result in ϕ being false. This
is essentially our second criterion. We added the antecedent about σ0 and σ1 differing in their
results because we needed this distinction to make the statement properly: if there’s no such ϕ,
then these actions have completely identical outcomes (at least that L∪�© can express), and so it
doesn’t really make a difference which one A does. But in this case (which is both more common
and more interesting), there’s an articulable difference between the outcomes of the two actions.
In such a case, the agent can have no idea which one to expect. This is precisely the epistemic
“opacity” we expect out of a coin-flip.

Furthermore, this makes good on the promise that coin flips ought to be nondeterministic.
Suppose that ϕ is not only true after σ0, but knowably so:

(MC , w) |=©σ0�ϕ.

But suppose σ0 ∪ σ1 ends up being σ0. So then it would be the case that

(MC , w) |=©σ0∪σ�ϕ. (*)

So, still assuming that (MC , w) |=©σ1¬ϕ, we obtain from Prop. 3.3 and some basic propositional
reasoning that

(MC , w) |= ♦©σ0∪σ1 ¬ϕ.

From there, we can use the fact that ‖σ1‖MC (w) is defined, plus some reasoning from ADTL (or
just semantic reasoning about DTMs) to see that

(MC , w) 6|= �©σ0∪σ ϕ.

17We will later make this more explicit as a kind of semantic equivalence called a “surjective Π-bisimulation”.
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Putting this together with (*), we get

(MC , w) 6|=©σ0∪σ1�ϕ → �©σ0∪σ ϕ

which is to say that σ0 ∪ σ1 is nondeterministic at w. Notice our reliance on the assumption that
(MC , w) |= ©σ1¬ϕ: if there is no L∪�© difference between the outcome of σ0 and the outcome of
σ1 (e.g. if σ0 = σ1, or if they happen to result in indistinguishable states), then σ0 ∪ σ1 could end
up being deterministic.

Let’s pivot back to our first criterion: σ0 ∪ σ1 consists of either σ0 or σ1, not some unrelated
action. There are various ways to express that claim, but here’s one.

Lemma 3.4
Let C be either Uω or U∞. Then, for any Π-DTM M, any σ0, σ1 ∈ Π∪ and any ϕ ∈ L∪PDL,

MC |= ♦©σ0ϕ ∨ ♦©σ1ϕ → ♦©σ0∪σ1ϕ

Lemma 3.5
Let C be either Uω or U∞. Then, for any Π-DTM M, any σ0, σ1 ∈ Π∪ and any ϕ ∈ L∪PDL,

MC |= ♦©σ0∪σ1ϕ → ♦©σ0ϕ ∨ ♦©σ1ϕ

Together, what these claims express is that the possibilities (as far as the agent can know)
for the outcome of σ0 ∪ σ1 are given by the possible outcomes of σ0 and σ1. Notice that we are
not claiming the equivalence of ©σ0∪σ1ϕ and ©σ0ϕ ∨ ©σ1ϕ, but are requiring they be equivalent
up to the agent’s possibility for knowledge. In Uω- or U∞-augmented DTMs, notice that the
interpretation of σ0 ∪ σ1 at some world w does not actually consist of executing σ0 or σ1 at w,
but rather at some nearby world w′ with the same M-state but an updated Γ-state. To account
for this difference, we must make this statement up to the agent’s possible knowledge. This is also
why we use the less expressive L∪PDL language: as we’ll see, L∪PDL cannot express Γ-state variation
– making a result like this possible.

However, we have a different motivation for putting this statement in the L∪PDL language.
Notice that these results, together, prove the validity of (U) axiom scheme (over L∪PDL) on Uω-
and U∞-augmented DTMs. What we’ll show now is that this axiom scheme completely captures
the L∪PDL logic of such models.

3.3 PDL Soundness and Completeness of Union

So far, we have provided ample indication that Uω and U∞, which were designed from an ex-
amination of coin-flipping, satisfy formal properties which seem to match our ideas about this
dynamic-epistemic phenomenon. An analogous development of, say, OR, would yield some similar
results. To conclude this chapter, we will connect this result to relational PDL, and show that Uω
and U∞ serve as dynamic-topological implementations of nondeterministic union.

To state this result, it will be helpful to be able to refer to the class of C-augmented DTMs.
This is given by the following definition.

Definition 3.2
Given some program constructor C, we will write DTMC to refer to the class of all Πc-DTMs
of the form MC for some Π-DTM M.18

18As mentioned in Subsect. 0.1, readers who do not wish to think about proper classes may instead take statements
involving DTMC to merely be convenient shorthands for quantified claims about the C-augmented DTMs themselves,
and not need to admit the ‘class’ of such structures as an object in its own right.
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We will show a soundness and completeness result with respect to this class. Soundness and
completeness results connect a particular axiom system to a given class of models: saying “Ax is a
sound and complete axiomatization of L with respect to K” (where Ax is some deductive system
producing theorems in the language L, and K is a class of models giving semantics for L) just
means that the set of theorems of the system Ax (or at least the ones expressible in the language
L) are precisely those L-formulas which are valid on all models in K. In this case, Ax captures the
essential logic (expressible in L) of models in K.

As we saw in Lemma 3.4 and Lemma 3.5, the characteristic axiom of union-models, (U), is valid
on all DTMs augmented with Uω or U∞. Combined with Prop. 1.5, this gives us that the deductive
system PDL0 + (U) – i.e. PDL0 with every instance of (U) added as an axiom – is sound with
respect to the classes DTMUω and U∞. What we now also claim is the converse, completeness.

Theorem 3.6
PDL0 + (U) is a sound and complete axiomatization of L∪PDL with respect to DTMUω

Theorem 3.7
PDL0 + (U) is a sound and complete axiomatization of L∪PDL with respect to DTMU∞

The critical thing to note here is the language: this claim (at least the completeness part)
is NOT true over the language L∪�© – there are many L∪�© formulas which are true on all Uω-

augmented DTMs but not provable from PDL0 +(U).19 What’s interesting about this result is that,
as far as the PDL language can express, both Uω and U∞ faithfully carry out the logic of relational
nondeterministic union in the dynamic-topological setting, thus fulfilling one of our central goals.

Finally, let us say one word about the proof of these theorems (they have a common proof,
which needs only trivial adjusting to suffice for either).20 As we’ve mentioned, the soundness result
is contained in what we’ve already proved. Conversely, recall that completeness (in the case of
Theorem 3.6) is the following statement:

MUω |= ϕ for all M =⇒ `PDL0+(U) ϕ.

We prove the contrapositive: that any nontheorem of PDL0 + (U) is refuted on some DTM of
the form MUω. To produce this “countermodel”, we leverage a relational completeness result. In
particular, it’s the case that any nontheorem of PDL0 + (U) is refuted on some union-model M .
Then we do a somewhat strange thing: we forget that M interprets ∪-programs, and consider it
just as a Π-relational model. We do this so we can transform it into an equivalent Π-DTM M (we
have a transformation which does this, from the proof of completeness for Prop. 1.5). The idea is
this: if Uω (or U∞) is genuinely playing the same role as the “relational program construction”
given by the equation Rσ0∪σ1 = Rσ0 ∪Rσ1 , then adding an interpretation of ∪ to M by augmenting
it to MUω (or MU∞) will end up achieving the same refutation of ϕ as we had in M . Lots of details
must be checked to verify this, but it all works out.

Conclusion of Chapter 1

In the earlier part of this work (particularly Sect. 1 and Subsect. 2.1), we established three primary
ingredients which combine to give the present inquiry:

19This is true for reasons which have little to do with program construction: for instance, PDL0 + (U) does not
prove �ϕ → ��ϕ. But even remedying this to, say, ADTL + (U) still doesn’t completely capture the logic of Uω or
U∞. We will need more elaborate tools to get something like that.

20As we’ll explore in the next chapter, the fact that these two program constructors – which are quite distinct
– have the exact same axiomatization (and that there is no essential difference in the proofs of the soundness and
completeness results) speaks to the profound limitations of the PDL language: it just isn’t expressive enough to
articulate the differences between Uω and U∞. The full L∪�© language, however, certainly can express the difference.
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1. Intuitions about agents navigating situations (especially coin-flipping situations)

2. Dynamic topological logic (including a theory of models and a deductive calculus)

3. Relational PDL and its process for interpreting constructed programs.

The central aim of this chapter was to establish a series of interconnections between these topics,
specifically to develop a framework for doing PDL-style program construction in agent DTL, in
such a way that admitted a plausible reading as the structure of an agent’s possibilities navigating
a situation with the help of a (possibly nondeterministic) device. The general framework we
expounded – the abstract definition of a program constructor – provides a basic terminology and
suite of basic results (Subsect. 3.1) to approach such a task. Within this framework, we were
able to describe multiple program constructors which (in various ways) carry out the logic of
nondeterministic union in the setting of agent DTL. The results of the previous section (especially
the soundness and completeness results) highlighted how program construction generally (and Uω
and U∞ specifically) managed to stay true to both our ideas about agents and the relational PDL
process it was mimicking.

From here, talk of agents and situations will take more of a backseat, and we will focus more on
developing the mathematical theory. Our impetus will be the shortcomings of the soundness and
completeness results: while these did well to tie agent DTL program construction to PDL program
construction, they manifestly fail to distinguish Uω from U∞: the PDL language (specifically the
(U) axiom scheme alone) are just not enough to capture how these constructors work in fine detail.
Building enough mathematical theory to achieve such a characterization now becomes our main
focus.



Chapter 2

Advanced Theory of Program
Constructors

Introduction

Our aim so far has been to develop the theory of this “agent DTL” as a framework for reasoning
about epistemology. But at this point, we turn our focus to expounding the pure mathematical
theory of this dynamic topological logic. So we’ll briefly untether ourselves from epistemic intuitions
and just go where the math leads. At the end of the day, we’ll be able to bring this inquiry back to
the more familiar intuitions from the before. So far, we’ve covered several topics which are essential
to a mathematical development of this variety of dynamic topological logic, but there’s much to be
explored. This chapter exists to document some interesting parts of this vast and interesting field
of inquiry – much will still be left to investigate after we’re done.

We organize our development of agent DTL around a quest to understand program constructors
better, and particularly to express their properties in the object language. We saw at the end of
the previous chapter that we can axiomatize the L∪PDL theories of Uω-agumented DTMs and U∞-
augmented DTMs. But L∪PDL is a relatively inexpressive fragment of the full language L∪�© that
such DTMs can interpret. In particular, it exemplifies the limitations of L∪PDL that it cannot express
the difference between Uω and U∞. What we want to do is bring the whole L∪�© language to bear,
and try to characterize the behavior of the program constructor in this much more expressive object
language. This will also bring us back to our intuitive understanding of agent DTL, because the
formulas of L∪�© admit an epistemic reading. In particular, L∪�© formulas express the dynamic-
epistemic properties of coin-flipping situations from the perspective of the coin-flipping agent. If
we manage to obtain a characterization of, say, U∞ in the language L∪�©, then we can interpret
those formulas, and see whether they make sense as descriptions of how coin-flipping situations
work. But before we can do this, we must clarify what “characterize” means: when does a set
∆ ⊆ Lc�© characterize a program constructor C, and what does it tell us about C-augmented
models and frames if it does? Making sense of this will prove to be quite a task – we will reject
several candidate notions of “characterize” before finding the right one – and will serve as the
central goal we’re working towards for this chapter.

The most immediate thing we might try is defining the class of C-augmented DTMs as a
subclass of the class of all Πc-DTMs. If we could, then the defining formulas would articulate the
“essential” properties of how the program constructor works, delivering us the result we wanted.
While it’s not clear how possible this kind of result is to obtain for arbitrary program constructors
C (it might work nicely for some C), the outlook is pessimistic for the program constructors
we’re concerned with. As an illustrative example, we ask the question: can the class DTMOR of
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OR-augmented DTMs be defined (as a subclass of the class of all Πor-DTMs) using the language
L�©(Πor)? Even if we weaken the requirements of this question, we’ll find that the answer is
no. If we instead inquire whether we can define FrameOR of OR-augmented frames, the answer is
no. If we inquire whether we can define FrameOR-BISIM of frames bisimilar to an OR-augmented
frame (for a notion of “bisimilar” which we’ll develop), the answer is – I believe – no. Moreover,
the proofs of these negative results will indicate that there’s a pattern here: defining classes of
models (or frames) in this way is simply ill-suited to study program constructors (or at least all
of our examples of program constructors), and likely won’t lead to useful results.1 If we want to
characterize our program constructors, we need to look elsewhere.

We then lay the groundwork for what will turn out to be a more successful notion of “charac-
terization”, informed by our failures to define classes of OR-augmented structures. This consists of
expounding a novel theory about dynamic topological frames, which we call refined frame theory.
Refined frame theory allows us more freedom in how we articulate dynamic-topological structure
using L�©(Σ). In particular, refined frame theory will turn out to be a quite fitting tool set to
study the structure and function of program constructors. After proving several invariance results
and developing some useful techniques for working with refined frames, we define an appropriate
notion of characterization. Characterization results will be generally obtainable,2, and will provide
very insightful descriptions of our program constructors in the object language. We conduct a char-
acterization of OR, and provide some indication of a possible approach to characterizing the more
elaborate constructors Uω and U∞. Attempts to characterize the latter two are beset by further
difficulties (which we make some effort to describe), which undoubtedly will serve as impetus for
interesting future study.

4 Undefinability

4.1 Bisimulation

First, let us introduce a notion we’ll use throughout. Recall the statements of Prop. 3.1 and
Corollary 3.1.1, which articulated that M and MC have the same L�©(Π) theories, both pointwise
and globally. To prove such results, we could always proceed by structural induction on L�©(Π)
formulas, proving inductively for each ψ that M (or a world of M) validates ψ iff the corresponding
worlds in MC do. But this turns out to be the kind of argument we frequently need to employ,
so good mathematical practice would be to abstract that reasoning away for easy application in
numerous places. The concept we need in order to do this is bisimulation. Bisimulations are a
standard tool in modal logic and in theoretical computer science3, and can be readily adapted to
our purposes.

Definition 4.1 (Bisimulation)
Let Θ,Θ′ be sets, and Σ ⊆ Θ ∩ Θ′. If M = (X, τX , {fσ} , VX) is a Θ-DTM and N =
(Y, τY , {gσ} , VY ) is a Θ′-DTM, then a binary relation s ⊆ X × Y is said to constitute a
Σ-bisimulation between M and N if the following conditions are satisfied:

1This also provides a fairly clear indication that this string of negative results is not peculiar to OR. Though we
do not pursue this topic explicitly here, my suspicion is that similar tricks could be used to defeat the prospect of
obtaining these kinds of results for Uω, U∞, etc.

2Though perhaps somewhat difficult and lengthy to prove
3See [15] and [8] for a treatment of bisimulations in relational modal logic, [17, pg. 17] in topological modal logic,

and [12] and [14] in the dynamic logic of programs.
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• (Base) For every p ∈ Φ, every x ∈ X and every y ∈ s(x)4,

x ∈ VX(p) ⇐⇒ y ∈ VY (p)

• (Forth) If x ∈ U ∈ τX and xsy, then there is a U ′ ∈ τY such that y ∈ U ′ ⊆ s(U)

• (Back) If y ∈ U ′ ∈ τY and xsy, then there is a U ∈ τM such that x ∈ U ⊆ s−1(U ′)5

• (Respects Σ) For each σ ∈ Σ,

– (σ-Forth) If xsy and fσ(x) is defined, then gσ(y) is defined and fσ(x) is related to
gσ(y) by s.

– (σ-Back) If xsy and gσ(y) is defined, then fσ(x) is defined and fσ(x) is related to
gσ(y) by s.

• (Total) s is total: the domain of s is X.

We’ll write s : M→| Σ N to indicate that s is a Σ-bisimulation from M to N. We’ll say that M
and N are Σ-bisimilar (in symbols, M→| Σ N) if there is some Σ-bisimulation between them.

We’ll write s : (M, x)→| Σ (N, y) to indicate s : M→| Σ N and xsy, in which case we say “x
is Σ-bisimilar to y”.

The essential idea of a bisimulation is to connect worlds of M with worlds of N which are
“structurally equivalent”, in that the two worlds have – as far as L�©(Σ) can express – indistin-
guishable surroundings. And it is for this reason that they’ll turn out to have identical L�©(Σ)
theories. The different clauses of the definition guarantee that the different components of the
dynamic-topological structure are “similar”. Let’s explore them in turn.

The (Base) condition ensures that the two models in question “agree on primitive propositions”:
bisimilar worlds must validate the exact same primitive propositions.6 (Back) and (Forth) are
the usual conditions from topological modal logic, which express that the bisimulation respects
the topological structure in the proper way. Indeed, (Forth) and (Back) articulate the relational
analogues of standard notions of topological similarity.

Proposition 4.1
Suppose s ⊆ X × Y is a binary relation between two topological spaces (X, τX) and (Y, τY ).
(1) and (2) are equivalent to each other, and (3) and (4) are equivalent to each other.

(1) s is continuous: for every U ′ ∈ τY , its preimage s−1(U ′) = {x ∈ X : xsy for some y ∈ U ′}
is in τX

(2) s satisfies (Back): If y ∈ U ′ ∈ τY and xsy, then there is a U ∈ τX such that x ∈ U ⊆
s−1(U ′).

(3) s is open: for every U ∈ τX , its image s(U) = {y ∈ Y : xsy for some x ∈ U} is in τY

(4) s satisfies (Forth): If x ∈ U ∈ τX and xsy, then there is a U ′ ∈ τY such that y ∈ U ′ ⊆
s(U).

4Recall s(x) denotes the set of those y ∈ Y such that xsy
5Recall s−1(U ′) is the set of those x ∈M such that xsy for some y ∈ U ′
6We’ll later articulate this same point by saying that the two valuations “respect” the equivalence established by

the bisimulation.



Semantics of Nondeterministic Construction 48

Keep in mind that these are “relational” notions of openness and continuity: s(U), the image of
U under s, is all those points y related to some element of U (which generalizes the usual notion
of the image of a set under a function). For some purposes, it will be helpful to use the earlier
statement of (Back) and (Forth); in other contexts, thinking of (Forth) as openness and (Back) as
continuity will be what we want.

Similarly, the (σ-Forth) and (σ-Back) conditions ensure that bisimilar models have the same
dynamic structure – that the simulation both preserves and reflects the system of partial functions.

Despite the stringency of some of these definitions, we actually do have an immediate variety
of interesting and relevant examples of bisimulations between dynamic topological models. In
paticular, this will include our original impetus: program constructors.

Example 4.1
Let M = (X, τX , {fπ} , V ) be a DTM and C a program constructor with state space Γ. Define
the relation TCM between X and X × Γ by

x TCM (x′, γ) iff x = x′

In other words: each x ∈ X is related to every element of X × Γ whose first coordinate is x
(this is depicted in the figure below). TCM is a Π-bisimulation:7

TCM : M→| Π MC

(X, τX)

(Γ, τΓ)

x1

TCM(x1)

x4x3x2

TCM(x4)TCM(x2) TCM(x3)

So we’ve established a bisimulation between M and MC . Now, we begin to put this concept
to work expediting the proofs of claims like Prop. 3.1.

7Note that TCM cannot be a Πc-bisimulation, since its domain is merely a Π-DTM.
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Theorem 4.2
If (M, x)→| Σ (N, y), the following equality holds:

Th�©(Σ;M, x) = Th�©(Σ;N, y).

So what this theorem says is that the existence of a Σ-bisimulation guarantees the L�©(Σ)-
equivalence of the points it connects. When we want to instead prove that the two DTMs in
question have the same “global” theory, we need our bisimulation to also be surjective.

Definition 4.2
Let s : M→| Σ N.

• We say that s is surjective if the image of s8 is all of |N|, 9 in which case we write
s : M 'Σ N. We indicate the existence of such an s by writing M 'Σ N.

• If s : M 'Σ N is furthermore an injective function s : |M| → |N|, then s is called
a isomorphism. In this case, we say M and N are Σ-isomorphic, which we denote
M ∼=Σ N.

Corollary 4.2.1
If M 'Σ N,

Th�©(Σ;M) = Th�©(Σ;N).

Since the TCM bisimulation is indeed surjective, we can use Corollary 4.2.1 to prove Corol-
lary 3.1.1. In addition to abstracting away the reasoning behind these results, bisimulations will
also play a central role in our overall task of studying the theory of program constructors. We shall
see why in a moment.

4.2 Model

So, as mentioned above, our goal is to assign to a program constructor C some collection of
Lc�© formulas which articulate the properties of the program constructor. We are in search of

a meaningful way to do that. A natural approach is to examine the class DTMC of all those
DTMs MC produced by the program constructor – which is a subclass of the class of all Πc-
DTMs. Obviously, the formulas satisfied by every DTM in DTMC10 tell us something about how
the program constructor works. So a simple candidate notion for a “characterization” of C is

just the set of formulas ∆ =
{
ϕ ∈ Lc�© : MC |= ϕ for all M

}
. But this feels inadequte as a

“characterization”: there are – in general – plenty of DTMs N which are not of the form MC but
which still validate all of ∆. The idea of class definition seeks to improve upon this.

Definition 4.3
A set ∆ ⊆ L�©(Σ) defines a class K of Σ-DTMs if

M ∈ K iff M |= ∆

A class K is said to be definable if there exists a ∆ which defines K.

So if ∆ defines a class DTMC , then a Πc-DTM N is of the form MC iff N |= ∆. So if we obtain
such a ∆, then ∆ must express the essential features of how C works: the models that validate
∆ are exactly those produced by C. The only question is, then, whether DTMC is definable. The
immediate answer is no, but for a reason which is quick to fix.

8The set s(M) := {y ∈ |N| : xsy for some x ∈ |M|}
9Some authors use the term “total” to mean “total” (in our sense) and surjective.

10E.g. every DTM in DTMU∞ validates every instance of (U).
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Note 4.1
If K is a L�©(Σ)-definable class of Σ-DTMs, then K is closed under surjective11 Σ-bisimulation:

M 'Σ N for some N ∈ K =⇒ M ∈ K.

To see this, observe that N ∈ K and ∆ defines K, so N |= ∆. But, by Corollary 4.2.1 and
the fact that M 'Σ N, we get M |= ∆. Thus M ∈ K.

So therefore, if we want to have any hope of DTMC being definable, we need to close it under
Πc-bisimulation.

Definition 4.4
Given any program constructor C, the class DTMC-BISIM consists of all those Πc-DTMs N
such that N 'Πc M

C for some Π-DTM M.

However, this too proves impossible to define.

Theorem 4.3
The class DTMOR-BISIM is not definable.

Let us say a brief word on how to prove such a result, which will illuminate better what this
result says. A (reasonably) straightforward way to demonstrate that a class K of Σ-DTMs is not
definable by any set of L�©(Σ)-formulas is to provide two models M and N such that:

(a) M ∈ K,

(b) N 6∈ K, but such that

(c) Th�©(Σ;M) ⊆ Th�©(Σ;N).

The existence of this setup makes it impossible for any set ∆ of L�©(Σ)-formulas to define K.
To see why, we argue that if ∆ is assumed to define K, we can use (a), (b), and (c) to obtain a
contradiction. The two relevant aspects of this situation are depicted in Figure 4.1 and Figure 4.2.

“∆ defines K” means precisely that K is exactly the class of all Σ-DTMs validating ∆. Thus,
if N 6∈ K, then it must be the case that N 6|= ∆. This is the situation depicted in Figure 4.1. On
the other hand, since M ∈ K, it must be the case that M |= ∆. That is, ∆ ⊆ Th�©(Σ;M). But
∆ ⊆ Th�©(Σ;M) ⊆ Th�©(Σ;N) and we thus get N |= ∆. This is depicted in Figure 4.2. Thus
we have a contradiction, and the assumption that ∆ defined K must fall. So a class K where this
setup is possible is necessarily undefinable. This is the approach we use to prove Theorem 4.3.

Specifically, we define a Πor-DTM N such that Thor
�©(POR) ⊆ Thor

�©(N) for some Π-DTM P·,
but such that N is not Πor-bisimilar to any OR-augmented DTM.12. What this means is that Lor

�©
is not discerning enough to distinguish whether or not a given Πor-DTM is “genuinely” (bisimilar
to) an OR-augmented DTM. Thus we have

(a) POR ∈ DTMOR-BISIM. Indeed, POR is bisimilar to an OR-augmented DTM: itself.

(b) N 6∈ DTMOR-BISIM because N is not bisimilar to any OR-augmented DTM.

(c) Thor
�©(POR) ⊆ Thor

�©(N)

11Surjectivity isn’t actually needed here, but we include it for simplicity.
12Precisely: there is no Π-DTM P such that N 'Πor POR
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N M

K = the class of

all DTMs validating ∆

Figure 4.1:
∆ defines K, (a) M ∈ K and (b) N 6∈ K

∆

Th�©(Σ;M)

Th�©(Σ;N)

Figure 4.2:
M |= ∆ and Th�©(Σ;M) ⊆ Th�©(Σ;N)

Put these together and we obtain the contradiction. Intuitively, the N we construct is good enough
of a “counterfeit OR-augmented DTM” to fool Lor

�© into thinking it is really OR-augmented, when
it in fact is quite different structurally.

Briefly, this is done by exploiting the fact that all Lor
�© formulas are of finite length. You

see, the key feature of OR-augmented DTMs is that there are pairs of worlds which are identical
as far as primitive programs go, but are quite different as far as constructed programs go. In an
OR-augmented DTM, the worlds (x, 0) and (x, 1) are identical primitively, but differ on (π1 or π2)
programs (“in one world, a coin flip comes up heads, in the other tails”). That is, for every
world w of an OR-augmented DTM, there is another world w′ which is exactly the same except
that it interprets or-programs in the opposite way. This condition cannot be enforced in the
object language: finite-length formulas cannot guarantee that two worlds agree on infinitely-many
formulas. We build our “counterfeit” DTM precisely by fooling Lor

�© into thinking we satisfied this
requirement, when we, in fact, have not. I believe this (or similar) techniques could be utilized to
prove that, for any of the other constructors we introduced (at least the nondeterministic ones),
the class of (Πc-DTMs bisimilar to) DTMs augmented with that constructor also cannot be defined.

We could, of course, expand the class K we’re interested in to include these “really good
counterfeits”, but it’s not clear what we’d arrive at. My view is that the counterfeit OR-augmented
DTM N is sufficiently unlike “real” OR-augmented DTMs that trying to encompass N into our
characterization of OR would be a mistake. Furthermore, as mentioned in the previous paragraph,
this issue does not appear to be unique to OR, but seems to affect all the program constructors
we’re interested in. On this basis, we conclude that defining classes of models by sets of formulas
will not deliver us the results we want. We will instead seek out a different notion.

4.3 Frame

A reader well-versed in modal logic will know that defining classes of models (in the foregoing sense)
is less common than trying to define classes of frames. Reviewing the topic of frame definability
in relational modal logic will likely prove helpful background for understanding the content of the
present section – we refer the reader to sources linked in Subsect. 0.1 (or any standard development
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of modal logic) for this. We’ll proceed to make the analogous definitions for dynamic-topological
frames, as well as restating some of our key definitions for frames.

Definition 4.5
Given a Σ-frame F and a formula ϕ ∈ L�©(Σ), we say F validates ϕ and write F |= ϕ just
in case

(F , V ) |= ϕ for all V : Φ→ P(|F|).

Definition 4.6
A set ∆ ⊆ L�©(Σ) is said to define a class K of Σ-frames if

F ∈ K iff F |= ∆

So this is a similar idea, but affords us much greater power to specify the desired structure.
The reason this notion is better equipped for requiring certain structure is that we are able to
“control the valuation” for the purposes of designing counterexamples: if F |= ϕ, this says that
every DTM we could define on F – not just one particular DTM – must validate ϕ. Therefore,
if we have a frame which is not in the class we’re trying to define, then we have an easier time
refuting formulas from ∆: we can adversarially pick some V , and know that if (F , V ) 6|= ϕ for just
this single V and a single ϕ ∈ ∆, then F 6|= ϕ as a whole. This higher bar means there’s less chance
of a “false positive”, a frame which validates the formulas but is not in the class. This lends hope
that we’ll do better sniffing out counterfeits, and might be able to define the classes of structures
we’re interested in.

The classes of frames we’re interested in, of course, are augmented frames.

Definition 4.7 (Frame-to-Frame Program Constructor)
Let n ∈ N be given. An (n-ary) program constructor C consists of an n-ary function symbol
c, a topological space (Γ, τΓ) and a rule which assigns to each Π-frame F = (X, τX , {fπ}π∈Π)
a Πc-frame FC such that

•
∣∣FC∣∣ = X × Γ;

• the topology of FC is the product topology of τX and τΓ;

• for all π ∈ Π, all x ∈ X, and all γ ∈ Γ,

‖π‖FC (x, γ) = (fπ(x), γ)

This definition, of course, is just Defn. 2.1 with any reference to valuations omitted (since frames do
not have an associated valuation). Similarly, we can do the same with our definition of bisimulations
by omitting the (Base) condition.

Definition 4.8
A relation s ⊆ X × Y is said to be a (frame) Σ-bisimulation between Σ-frames F =
(X, τX , {fσ}) and G = (Y, τY , {gσ}) if the following conditions are met.

• (Forth) If x ∈ U ∈ τX and xsy, then there is a U ′ ∈ τY such that y ∈ U ′ ⊆ s(U)

• (Back) If y ∈ U ′ ∈ τY and xsy, then there is a U ∈ τX such that x ∈ U ⊆ s−1(U ′)

• (Respects Σ) For each σ ∈ Σ,

– (σ-Forth) If xsy and fσ(x) is defined, then gσ(y) is defined and fσ(x) is related to
gσ(y) by s.
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– (σ-Back) If xsy and gσ(y) is defined, then fσ(x) is defined and fσ(x) is related to
gσ(y) by s.

• (Total) s is total: the domain of s is X.

If the image of s is all of Y , we call s surjective. We adopt all our same notations from
Defn. 4.1 and Defn. 4.2, e.g. writing s : (F , x) 'Σ (G, y) to indicate that s is a surjective
Σ-bisimulation between F and G and xsy.

Note 4.2
Given Σ-DTMs M = (F , V ) and N = (G, V ′) and a Σ-bisimulation s : M→| Σ N, then s is also
a frame Σ-bisimulation between the frames F and G.

So, in particular, the bisimulation TCM : M 'Π MC can be regarded as a bisimulation of the
underlying frames TCF : F 'Π FC . It turns out that we do not have the same invariance result
between bisimilar frames that we did for models: it’s possible to have F 'Σ G but for F and G to
have different L�©(Σ)-theories. In the next section,13 part of what we will obtain is a notion of a
frame’s “theory” which is invariant across bisimulations. But that won’t matter for the point we
make below.

So, continuing to trace the steps we made in the model case, we define the class of “C-augmented
frames, up to bisimulation”.

Definition 4.9
Given a program constructor C, the class FrameC-BISIM consists of exactly those Πc-frames G
such that G 'Πc FC for some Π-frame F

And we arrive again at the question: can we define this class? If we could, then we would have
an excellent object-language characterization of how our program constructor works: if ∆ defined
FrameC-BISIM, then every DTM atop a C-augmented frame (including all C-augmented DTMs)
would validate ∆, and moreover a frame would validate ∆ only if it was (up to bisimulation) of
the form FC for some F . Frame definition, since it quantifies over all valuations, provide a much
deeper structural description of the frame (and is impervious to the contingencies of a particular
valuation).

But this also seems to be impossible for our basic example of C = OR.

Conjecture 1
The class FrameOR-BISIM is not definable.

The above is stated as a conjecture because we do not endeavour to prove it here: I believe it can
be proved using a more elaborate version of the proof of Theorem 4.3, but the details which must
be checked are too extensive (and the topic deserves separate treatment). The main issue here, it
turns out, is that frame-level satisfaction is too restrictive: requiring FOR |= ϕ for all F is a high
bar, so the only formulas validated by all OR-augmented frames are ones which are generic enough
for other Πor-frames to validate. Note that this is the opposite problem from the model case: there,
it was too easy to validate formulas. But the result is the same: no single set ∆ suffices. So we
must look elsewhere.

13Or actually more so in Sect. E
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5 Refined Frame Theory

5.1 Idea

Our woes in the previous section both arise from not exercising the correct level of control over
the valuations. In the model case, we were able to prove DTMOR-BISIM undefinable by carefully
designing a particular DTM (with a very specific valuation) to have a Lor

�© theory like a member

of DTMOR-BISIM even though it wasn’t a member of that class. Such annoying contingencies are
just a feature of trying to define classes of models. When working at the frame level, we had the
opposite problem: by quantifying over all valuations on some FC , we refuted too many formulas –
again leading to undefinability.

But if we reflect more carefully, it makes more sense why the latter failure happens. Notice
that the L�©(Σ) theory of a Σ-frame is defined to be those formulas which that frame validates
for every valuation. So the Lor

�©-theory of some frame FOR is given to be the set of those formulas

ϕ which (FOR, V ) validates for every V : Φ → P(
∣∣FOR

∣∣). But this is casting too broad a net:
there are many valuations on FOR which don’t make sense to study if we’re trying to understand
how the OR program constructor works. In particular, this notion of the frame’s “theory” takes
into account valuations which assign (x, 0) and (x, 1) different truth values for some primitive
propositions. This violates how the program constructor is supposed to work: (x, 0) and (x, 1)
are supposed to be indistinguishable “copies” of the same world x, but augmented with data to
nondeterministically resolve a single binary choice – this doesn’t work if they are distinguishable,
by primitive propositions no less. Moreover, a valuation which makes such an assignment would
never arise in the process of applying program constructors at the model level: for any x ∈ |M|,
(x, 0) and (x, 1) have the exact same valuations in MOR by definition (not by definition of OR
specifically, but rather more generally as specified for all program constructors in Defn. 2.1).So
what we pursue in this section is a notion of the frame’s “theory” which excludes these kinds of
valuations.

But how do we express this kind of “restriction” on what valuations are allowed to be considered
in the frame’s theory? In particular, what we were trying to do with the definition results earlier
was carve the class of OR-augmented models (or frames) out of an ambient class (the classes of
all Πor-DTMs and Πor-frames, respectively) – what ambient class are we trying to define this class
of “frames but only with certain valuations” structures out of? What does it mean for such a
structure to be bisimilar to one produced by the program constructor? These are all questions
which we must address in developing this notion of theory. We’ll find that they all admit satisfying
answers, and moreover equip us with conceptual tools to better apprehend dynamic topological
structures generally, and OR-augmented, Uω-augmented, and U∞-augmented frames specifically.

5.2 Formal Details

Let us make explicit the kind of restriction on valuations we will impose. What we will do is
“package” another piece of data along with a Σ-frame which limits what valuations may be attached
to this frame. More specifically, we will supplement our frame G with an equivalence relation R on
the state space of G (which satisfies certain properties). This will encode a restriction on valuations
by stipulating which worlds must get the same valuation: worlds related by R must agree on all
primitive propositions. Before we get there, let us begin by defining what kind of equivalence
relation is suitable for this purpose.
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Definition 5.1
Let G = (Y, τY , {gσ}) be a Σ-frame for some Σ ⊇ Π.14 A relation R ⊆ Y × Y is said to
constitute a refinement relation on G if the following conditions are met.

(1) R is an equivalence relation.

(2) For all U ∈ τY , the set R(U)15 is open: R(U) ∈ τY .

(3) For all π ∈ Π, if y, y′ ∈ Y are such that yRy′ and gπ(x) is defined, then gπ(y′) is defined
and gπ(y)Rgπ(y′).

The idea of a refinement relation is to relate together worlds which are equivalent as far as
Π-programs go, but may be different when it comes to programs in Σ \Π. Of course, our ultimate
interest is in Σ = Πc, in which case a refinement relation encodes worlds that behave identically as
far as primitive programs are concerned but differ on constructed programs – like (x, 0) and (x, 1).
The purpose of (1) is just to ensure that R encodes a notion of equivalence (from the standpoint
of set theory). We shall see the relevance of (2) later, but it will guarantee that the R relation
interfaces with the topology properly. (3) is the interesting one: it states that the interpretation of
Π-programs coheres with the notion of equivalence R stipulates: if two worlds are equivalent per
R, then the interpretation of π is equivalent in the two worlds (either ‖π‖ is undefined at both, or
defined at both and the resulting states are R-equivalent too). Note, however, that this definition
makes no requirement about the interpretation of programs σ ∈ Σ\Π: the interpretation gσ of such
a σ may interface with R in any manner whatsoever, and usually will not satisfy the requirement
that (3) makes for π ∈ Π.

Of course, program construction furnishes our leading example.

Example 5.1
Let F be a Π-frame and C a program constructor. We define the relation RCF ⊆

∣∣FC∣∣× ∣∣FC∣∣
by the following equation: for all x ∈ |F|,[

(x, γ)
]
RCF

= {x} × Γ ⊆
∣∣FC∣∣ .

In words: each state (x, γ) of FC is related to all worlds (x, γ′) which have the same first
coordinate but whatever second coordinate.

This is a refinement relation on FC . (1) It’s straightforward to check that this is an
equivalence relation. (2) is slightly more involved,16 and (3) follows quickly from the definition
of ‖π‖FC for π ∈ Π.

What the relation RCF does is indicate which worlds of FC are “copies” of the same world of
F . Recall that the state space of FC is |F|×Γ, i.e. it consists of Γ-many copies of each state of F .
RCF relates exactly those worlds are the same x paired with (perhaps) different γs. Remember: the
point of this relation is to tell us which worlds should always get the same valuation when we’re
trying to figure out the theory of FC for class definition purposes. We said earlier that we want

14In the present work, we’re interested in Σ = Πc for various c.
15Recall R(U) is the set of all those y′ ∈ Y such that yRy′ for some y ∈ U
16Picking U open in FC , we can see that RCF (U) is open through the following reasoning: it can be proved in

general that for any topological spaces (X, τX) and (Γ, τΓ), the first projection function pr1 : X ×Γ→ X is open (for
any open U ⊆ X × Γ, its image pr1(U) ⊆ X is in τX). So pr1(U) ∈ τX . So then observe that

RCF (U) = pr1(U)× Γ

which must be open by definition of the product topology, since pr1(U) is open in τX (by the above) and Γ is open
in τΓ (by the axioms of topology).



Semantics of Nondeterministic Construction 56

to only include those valuations which arise from model-level program construction. As we’ll see
shortly, RCF achieves this perfectly.

Next, let us define refined frames.

Definition 5.2
A refined (Σ-)frame is a pair (F ,R), where F is a Σ-frame (for Σ ⊇ Π) and R is a refinement
relation on F .

This is the kind of object that a C-augmented frame is: not only does it consist of the frame
FC , but it comes included with some information (the relation RCF ) indicating which worlds ought
to get the same valuation (thereby restricting the kinds of valuations which can be placed on this
frame). Indeed, we will think of frame-level program construction as producing a refined frame.

Note 5.1
Henceforth, we will think of a program constructor C, when applied to a Π-frame F , as
producing not merely a Πc-frame FC , but a refined ΠC-frame, (FC ,RCF ).

By making the definition much more abstract than just program construction (a refined frame
need not arise from program construction), we have set up an ambient class of structures which
the class of C-augmented structures may be defined out of. Defining a class of models by L�©(Σ)
formulas designates a subclass of the general class of Σ-DTMs, defining a class of frames carves out
a subclass of the class of all Σ-frames, and we may indeed give a notion of “definition” for refined
frames. But in order to do so, we must have a notion of “theory” for refined frames. Introducing
this notion will allow us to make good on our repeated assertion that the refinement relation R of
a refined frame “restricts the allowed valuations” and “declares which worlds should get the same
valuation”.

Definition 5.3
Given a refined Σ-frame (G,R) we say that a valuation V : Φ→ P(|G|) respects R if, for all
(x, x′) ∈ R and all p ∈ Φ,

x ∈ V (p) ⇐⇒ x′ ∈ V (p)

i.e. R-related worlds get the same valuation.

Given a formula ϕ ∈ L�©(Σ), we say that (G,R) validates ϕ and write (G,R) |= ϕ just
in case (G, V ) |= ϕ for all V which respect R.

We write Th�©(Σ;G,R) to denote the set of all ϕ validated by (G,R). We adopt the same
notational conventions for Th�© as before.17

First, to see the relevance of this notion of a valuation “respecting” a refinement relation, note
that {

(FOR, V ) : V respects ROR
F

}
=
{
MOR : M = (F , v) for some v : Φ→ P(|F|)

}
i.e. ROR

F -respecting valuations are exactly those valuations which arise from applying the OR
program constructor to Π-DTMs. So the valuations which ROR

F permits to be included in the
“theory” of (FC ,ROR

F ) are those which could’ve arisen by applying the program constructor at the
model level, establishing the theory of (FC ,ROR

F ) as the notion of “theory” which best reflects how
program constructors work.

In general, this is how we wish to think of refined frames: they’re frames which have a refinement
relation which specifies restrictions on valuations. This “restriction” is implemented in the definition

17E.g. writing Thor
PDL(FOR,ROR

F ) to mean the set of all those ϕ ∈ Lor
PDL such that (FOR, V ) |= ϕ for every valuation

V on FOR which respects ROR
F .
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of theory: (G,R) |= ϕ means that any model built atop G whose valuation respects R will validate
ϕ. This is a weaker notion of satisfaction than the standard notion (G |= ϕ) we covered before,
because there are fewer valuations allowed, hence less potential for countermodels. Indeed, the
standard frame theory corresponds to the weakest refinement relation on a frame.

Note 5.2
If R is the identity relation {(x, x) : x ∈ |F|} on F (which, note, is a refinement relation).
Then every valuation respects R, so the associated theory Th�©(Σ;F ,R) is just the standard
frame theory, Th�©(Σ;F).

For another example of refinement relations, where to get them, and how they behave, see Sect. E
(this material is not strictly necessary for anything that follows).

Let us take a pause to summarize. We have introduced the notion of a refinement relation, which
is a kind of relation that can be placed on a frame which coheres with the structure of the frame
appropriately. A frame equipped with such a relation is a refined frame. Refined frames have their
own notion of theory, which only takes into account valuations which respect the refinement relation.
Alongside this general development, we developed the example of refined frames being produced
by program construction: a program constructor C produces a refined Πc-frame (FC ,RCF ).

What we have developed thus far is quite a bit too general. There’s not too much we can
say about refined frames or about program constructors at this level of generality, as this level
of generality admits too broad a class of examples – including many which are poorly-behaved or
pathological in various ways. So let us develop some special properties refined frames (and program
constructors) can have, and see what further results they allow us to obtain. In particular, we will
be interested in articulating in abstract terms those properties common to the examples listed in
the previous chapter (which may not hold of all program constructors), and the special properties
of the refined frames they produce. We do so in the concept of outcome-dense refinement classes.

Understanding the precise meaning of this condition is not essential, and can be overlooked if
desired. What is important is to understand is that it is a condition which may or may not hold
of a given refined frame, and that it does hold of all the main examples of program constructors
we’re working with, by virtue of the structural properties of the program constructor.

Definition 5.4
A refined Σ-frame (G,R) is said to have outcome-dense refinement classes if the following
is true for every σ ∈ Σ and every w ∈ |G|:18

• If ‖σ‖G (w) is defined: For every open set U such that [w]R ∩U 6= ∅, there exists some
w′ ∈ [w]R ∩ U such that

(‖σ‖G (w), ‖σ‖G (w′)) ∈ R

• If ‖σ‖G (w) is not defined: For every open set U such that [w]R ∩ U 6= ∅, there exists
some w′ ∈ [w]R ∩ U such that ‖σ‖G (w′) is undefined.

One of the most significant things common to all the examples of program constructors we
gave is that the topology τΓ on the “constructor state space” Γ is indiscrete. Epistemologically,
this corresponded to the constructor state being completely opaque to the agent. Mathematically,

18Some intuition on this definition: the goal of this definition is to facilitate Theorem 5.1, which guarantees that
R-related worlds have the same PDL theories. So we need to guarantee that if ♦©σ ψ holds in one world of the
equivalence class, then it holds in all worlds of the equivalence class. This can be defeated if there’s some open set U
nontrivially intersecting some [w]R where none of the worlds of U validate©σψ, but where some world w′ ∈ [w]R \U
does satisfy ©σψ. Then, ♦©σ ψ holds at w′, but won’t hold in [w]R ∩ U , because U witnesses �¬©σ ψ. A refined
frame with outcome-dense refinement classes is one where exactly this kind of thing cannot occur.
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it means (among other things) that they all produce refined frames which have outcome-dense
refinement classes.

Example 5.2
Let C be an “indiscrete program constructor”: one whose corresponding topological space
(Γ, τΓ) is indiscrete (τΓ = {∅,Γ}). It turns out that any refined Πc-frame (FC ,RCF ) produced
with such a program constructor has outcome-dense refinement classes.1920

Since all the examples we’re interested in have this property, results relying on that property
are of interest to us. Assuming outcome-dense refinement classes indeed allows us to prove quite
a nice result, one which makes precise the claim that worlds x, x′ which are R-related in a refined
Σ-frame (G,R) are “Π-equivalent, but may differ on Σ \ Π”. It also shows that the PDL theories
(even for the full program set Σ) are invariant across R-equivalence classes in such a refined frame
– setting up the point (to be made in a second) that they actually constitute relational models of
PDL at the same time. The case where Σ = Πc is summarized in Figure 5.1.

Theorem 5.1 (Refinement-PDL)
Suppose (G,R) is a refined Σ-frame which has outcome-dense refinement classes and let V be
any valuation on G which respects R. Then, for any x, x′ ∈ |G| such that xRx′, the following
equalities hold.

Th�©(Π; (G, V ), x) = Th�©(Π; (G, V ), x′)

ThPDL(Σ; (G, V ), x) = ThPDL(Σ; (G, V ), x′)

In words: R-related worlds agree on all agent DTL formulas about primitive programs (i.e.
ϕ ∈ L�©(Π)), but when it comes to the expanded set of programs Σ, we can only guarantee
that R-related worlds agree on formulas in the more restricted PDL language, LPDL(Σ). Viewed
slightly differently, we might say that each R-equivalence class seems to have a single “opinion”
about which L�©(Π) formulas are true and which LPDL(Σ) formulas are true (and, where these
overlap, its “opinion” is consistent). So even though R-related worlds may have different L�©(Σ)
theories (indeed, this is how we achieve nondeterminism), they manage to all agree on these two
important fragments.

This reflects a deeper fact about these structures: a refined Σ-frame is essentially a Π-frame
with a relational semantics for Σ \ Π “on top”. To see the first part of this, suppose (F ,R) is a

19This is because – if C is indiscrete – then for any given x ∈ |F|, there cannot possibly be an open set U ⊆
∣∣FC∣∣ =

|F| × Γ containing (x, γ) but not (x, γ′): the set {x} × Γ ⊆
∣∣FC∣∣ is either contained in, or disjoint from U , or else U

is not open (this can easily be proven from the definition of the product topology and the definition of “indiscrete”).
Call this fact (*).

We can then prove the appropriate condition from Defn. 5.4 as follows: suppose we have a σ ∈ Σ, a w = (x, γ) ∈∣∣FC∣∣ and an open U such that [
(x, γ)

]
RTC

F
∩ U 6= ∅. (**)

Recalling the definition of RCF from Example 5.1 and Example E.2, we have that[
(x, γ)

]
RC

F
= {x} × Γ.

Therefore, combining (*) with (**), we see that {x} × Γ ⊆ U . Therefore (x, γ) itself is in U , so the requirements of
Defn. 5.4 can be achieved trivially by putting w′ = w.

20Note that we have specifically proved here that w ∈ U under the assumption that (Γ, τΓ) is indiscrete. Absent
this assumption, the open sets U which intersect nontrivially with [w]R may not contain w itself, and so, if we’re
claiming that (F ,R) has outcome-dense refinement classes, we must demonstrate that [w]R ∩U contains some world
w′ in which σ has the same outcome (up to R-equivalence) as it does in w (or no defined outcome, if that’s what
happens in w).
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LPDL(Πc)

LPDL(Π)

L�©(Π)

L�©(Πc)

Figure 5.1: Languages interpreted by a refined Πc-frame
The red-shaded region (L�©(Π)) is invariant across the R-equivalence classes of a refined Πc-frame, and so

too is LPDL(Πc), provided those refinement classes are outcome-dense. In general, however, R-related

worlds are still allowed to have different L�©(Πc) theories.

refined Σ-frame, and M = (F , V ) is a Σ-DTM whose valuation V respects the refinement relation
R. Since M is a Σ-DTM, M is also a Π-DTM, by virtue of the fact that Σ ⊇ Π. But when viewed
as a Π-DTM, M may contain a lot of “redundancy”, i.e. worlds which play the exact same role
in the Π-structure, and which could be “glued together” without changing the L�©(Π)-theories
of any of the surrounding worlds. Which worlds we could identify is encoded by the refinement
relation R: the point of R, recall, is to say which worlds, from the perspective of the Π-structure,
are the same.

Indeed, we could explicitly collapse an entire R-equivalence class into a single world, and we
would obtain a structurally equivalent (read: Π-bisimilar) model to what we started with. This
process is made explicit with the definition of quotients.

Definition 5.5
Let (G,R) be a refined Σ-frame, with G = (Y, τY , {gσ}). The quotient of G by R (denoted
G/R) is a Π-frame with

• State space Y/R, the set of R-equivalence classes

• The quotient topology of τY by R
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• Interpretations of π ∈ Π given by:

‖π‖G/R ([y]) =

{
[gπ(y)] if gπ(y) is defined

undefined otherwise

Note that the last definition is well-defined, by the 3rd defining condition of refinement relations.

If N = (G, V ) is a Σ-DTM whose valuation V respects R, then we may also define N/R
to be the frame G/R with the corresponding valuation VR:

[y]R ∈ VR(p) iff y ∈ V (p)

which is well-defined by the assumption that V respects R.

Note 5.3
Given any refined Σ-frame (G,R), the quotient function

QR : y 7→ [y]R

is a surjective Π-bisimulation21 G 'Π G/R.

So what quotienting a frame G by a refinement relation R does is identify the worlds which
R considers equivalent. The conditions of a refinement relation make it so the topology and the
interpretations of Π-programs survive this operation. The condition of V respecting R guarantees
that V can be quotiented in a well-defined manner too. However, quotients need not preserve the
structure of programs in Σ \ Π: we do not make a requirement like (3) from Defn. 5.1 for thse
programs, so ‖σ‖G/R need not be well-defined (hence why G/R is simply a Π-frame).

We said above that we can view refined Σ frames as “Π-frames, with a relational interpretation
of Σ \ Π atop”. The “Π-frame” aspect refers to the fact that refined frames may be quotiented
– a process which “boils G down”22 to just its Π-structure, removing any redundancy of worlds
which R has marked as unnecessary for interpreting Π. The “relational interpretation of Σ \ Π
atop” refers to this point: if we try to carry the interpretation of σ ∈ Σ \Π through the operation
of quotienting, the resulting interpretation ‖σ‖G/R may not be a partial function. In particular, if

there were worlds y, y′ of G such that yRy′ but where gσ(y) was not related to gσ(y′) by R (this
setup is only precluded by Defn. 5.1 for Π-programs), this would create an ambiguity if we tried to
define ‖σ‖G/R as in Defn. 5.5:

‖σ‖G/R ([y]) := [gσ(y)] 6= [gσ(y′)] =: ‖σ‖G/R ([y′]).

Instead, using this definition for elements of Σ\Π, in general, produces binary relations rather than
partial functions. This is why we describe this as a “relational interpretation of Σ \Π”: though it’s
implemented using dynamic topological logic (G itself is still very much a Σ-frame, and interprets
all of Σ as partial functions), we can view it as implementing a relational-PDL-style logic over and
above the interpretation of Π-programs. Let’s make this more explicit.

21Note that this function is automatically total and surjective (by basic properties of equivalence relations) and
moreover is continuous (which, recall, is equivalent to (Back) from Defn. 4.8) by definition: the quotient topology is
defined as the finest topology making this function continuous. The second condition of Defn. 5.1 guarantees that
this function satisfies (Forth). As mentioned, the third condition of Defn. 5.1 guarantees that the given definition
of ‖σ‖G/R is well-defined, and this definition immediately guarantees that QR respects Π (in the sense required by
Defn. 4.8).

22This was the original motivation for the word “refinement”.
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Definition 5.6
Given a refined Σ-frame (G,R) and a DTM M = (G, V ) where V respects R, define the
Σ-collapse of M by R, denoted M // R, to be the (Σ \Π)-relational model whose

• state space X = {[y] : y ∈ |G|} is the set |G| /R of R-equivalence classes,

• relations Rσ for σ ∈ Σ \Π are defined by

[x]Rσ[z] iff ‖σ‖G (x′) = z′ for some x′ ∈ [x], z′ ∈ [z],

• and whose valuation v : Φ→ P(X) is given by23

[x] ∈ v(p) iff x ∈ V (p)

We’ll also write G // R to denote the relational frame (X, {Rσ}), where X and Rσ are as
above.

So the idea here is that G/R and G // R tell us everything we need to know about G: the
quotient G/R conveys the Π-logic of G, and the collapse G // R tells us how the rest of the pro-
grams are interpreted (it gives us the relational structure which of non-Π programs that (G,R) is
“implementing” in the dynamic-topological structure). As we’ll see in the next section, the col-
lapse will prove quite helpful understanding the structure of augmented DTMs, especially because
we’re intending them to be dynamic-topological analogues of relational PDL. We can calculate the
collapse of frames augmented with our program constructors, and get back the familiar relational
structure we were aiming for. Let’s turn our attention to doing this.

6 Characterization

6.1 Refined Frame Theory and Program Construction

Before returning to our main impetus (characterization), let’s begin by using the tools of the
previous section to study C-augmented frames. First, we can instantiate Theorem 5.1 to be about
augmented frames, and obtain this result.

Corollary 6.0.1
If C is an indiscrete program constructor (in the sense of Example 5.2), then for all Π-DTMs
M = (F , V ), and all worlds w,w′ of MC such that wRCFw′,

ThPDL(Πc;MC , w) = ThPDL(Πc;MC , w′).

This says that the different “copies” of the same M-world in a C-augmented DTM MC (with
the assumption that C is indiscrete) have the same PDL theories, even about constructed programs.
So the whole RCF equivalence class has a single opinion of the truth value of every LcPDL formula,
kind of like a world in a relational PDL model (the point of collapses is to make this connection
a bit more explicit). Moving along, we can use quotients to express an important property of
augmented DTMs.

Proposition 6.1
For any program constructor C and any Π-frame F ,

F 'Π FC/RCF .

Indeed,
F ∼=Π FC/RCF .

23This is well-defined by the assumption that V respects R.
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This just verifies what we’ve been saying all along: that an augmented frame FC interprets
primitive programs in the exact same way as F . The program constructor makes Γ-many copies of
each state of its input frame F , but all these copies are Π-equivalent (as encoded by the refinement
relation RCF ), and indeed we can identify all the copies to obtain our original frame back.

As mentioned, a refined Σ-frame is a DTL implementation of some relational logic on top
of a Π-frame. Our interest was to capture the relational logic of PDL program constructors in
the dynamic topological setting. Collapses give us the tools we need to argue we have faithfully
“captured” this logic.

Example 6.1
Let F be any Π-frame, and consider the (Π∪ \Π)-relational frame

FUω // RUω
F .

The relations Rσ0∪σ1 of this relational frame tell us what Uω is “doing”. What Uω is doing is
implementing the PDL ∪ constructor in DTL: for all σ0, σ1 ∈ Π∪,

Rσ0∪σ1 = Rσ0 ∪Rσ1 .

Likewise for U∞.

What does this mean? Well, notice again what condition (3) of Defn. 5.1 says: primitive
programs, when executed from R-related worlds, must have R-equivalent behavior. So, for prim-
itive programs π, the entire R-equivalence class is unified: either ‖π‖ is undefined at every point
of the class, or it’s defined across the R-class and ends up in a single R-class (you cannot have
R-equivalent worlds which have non-R-equivalent results). So a primitive program π “connects”
each R-equivalence class to at most one other R-class. But not so for constructed programs: it’s
possible to have R-related worlds w,w′ where ‖π0 ∪ π1‖ (w) and ‖π0 ∪ π1‖ (w′) are not R-related.
So non-primitive programs connect an R-equivalence class to possibly many other R-equivalence
classes. What this result shows is that, if we use Uω to interpret ∪, then an RUω

F -equivalence class
E is “connected” (in this sense) by σ0 ∪ σ1 to any equivalence class E is connected to by σ0 or by
σ1, i.e. it is implementing union.

Ultimately, this is what was going on “behind the scenes” of the results of Subsect. 3.3: Uω and
U∞ were achieving the same thing in DTL that the ∪ program constructor does in relational PDL.
Hence why the PDL theories corresponded closely. A similar analysis of some of the other con-
structors we defined (e.g. STAR∞) will show that they too represent classic relational constructors
in the dynamic-topological setting.

Finally, back to the initial purpose of refined frame theory: defining program constructors in
the object language. We have established a general class of objects (the class of all refined Πc-
frames) and located our augmented objects (refined frames of the form (FC ,RCF )) within it. Let’s
articulate and define this subclass.

As before, our classes will be closed under a notion of bisimilarity. A bisimulation of refined
frames is simply a bisimulation between the frames which respects the refinement relations on its
domain and codomain in the proper way. Our ultimate goal is to provide a set ∆ of Lc�©-formulas
such that, if a refined Πc-frame (G,R) validates all of ∆, then (G,R) is “essentially” of the form
(FC ,RCF ) for some F . That means we want R to play the same role in shaping the structure and
logic of G as RCF does for FC . Therefore, the notion of “bisimilarity of refined frames” we’ll use
includes a tight correspondence between the refinement relations.

Definition 6.1
Let (F ,R) and (F ′,R′) be refined Σ-frames. We say that s is a Σ-bisimulation of refined
frames between (F ,R) and (F ′,R′) – denoted s : (F ,R) →| Σ (F ′,R′) – if the following
conditions hold.
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• s is a Σ-bisimulation from F to F ′

• For all worlds x, y of F and all worlds x′, y′ of F ′ such that xsx′ and ysy′

xRy ⇐⇒ x′R′y′

As usual, we furthermore write s : (F ,R) 'Σ (F ′,R′) to indicate that s is surjective.

So this is the notion of two refined frames being “essentially the same”. So, as mentioned,
we want an object-language condition which is strong enough to guarantee that every refined
frame which validates it is “essentially” an augmented frame. At long last, this is the notion of
characterization.

Definition 6.2
Let C be a program constructor. A set ∆ ⊆ Lc�© is said to characterize C if the following
two conditions hold.

• For every Π-frame F , (FC ,RCF ) |= ∆

• For every refined Πc-frame (G,R), if (G,R) |= ∆, then there exists a Π-frame F such
that

(G,R) 'Πc (FC ,RCF )

In short: ∆ characterizes C just in case ∆ picks out exactly those refined frames which (up to
bisimulation) arise from application of the program constructor. We’ll spend the rest of this section
making a few comments and claims about this definition, and then the subsequent two sections will
give a full characterization of OR, and a discussion of how to characterize (and some of the further
difficulties which arise when we try to characterize) Uω and U∞.

We conclude this section by giving a more convenient form for the first condition.

Proposition 6.2
For any C, the following are equivalent.

• For every Π-frame F , (FC ,RCF ) |= ∆

• For every Π-DTM M, MC |= ∆

The goal of this claim is simply to make the notion of “characterization” more simple and concrete
by eliminating the reference to refinement relations. This statement holds in light of the observation
above that RCF -respecting valuations are exactly those valuations that C-augmented DTMs are
equipped with. So, when we go to prove a characterization result, this is often how we’ll go about
it. The main thrust of the definition of characterization is the second requirement: to stipulate a
kind of converse of this statement, at the proper level of universality.

Accordingly, the second condition of Defn. 6.2 will prove significantly more cumbersome, for
the same reasons that completeness results are generally more challenging to prove than soundness
results. For the characterization proofs we’ll be doing, the Π-frame F which we’ll use to witness this
second condition is G/R. We can think of this as “taking away the interpretations of constructed
programs” (taking G/R to obtain a mere Π-frame) and then “adding it back” (by augmenting). If
the G we started with was of the right form to begin with (which is what we’re trying to show),
then this should produce a bisimilar result. This is what the condition requires.

With that, let us now proceed to carry out a full example, which will hopefully make more
clear how all these parts fit together.



Semantics of Nondeterministic Construction 64

7 Or

The point of this section is to provide a concrete example of how to conduct a characterization
proof. OR is a simple enough program constructor, but, as we’ve seen, managed to evade definition
using more traditional means (thus proving the efficacy of this notion of characterization). We
make some definitions for convenience of notation; the role of Maybe0, Maybe1, etc. will become
clear as the proof proceeds.

Definition 7.1
For any π0, π1 ∈ Π and p ∈ Φ, define

Maybe0(p, π0, π1) ≡ ©π0p ↔ ©π0 or π1p

Maybe1(p, π0, π1) ≡ ©π1p ↔ ©π0 or π1p

and

Only0(p, π0, π1) ≡ (©π0p ∧ ¬©π1 p ∧ ©π0 or π1p) ∨ (¬©π0 p ∧ ©π1p ∧ ¬©π0 or π1 p)

Only1(p, π0, π1) ≡ (¬©π0 p ∧ ©π1p ∧ ©π0 or π1p) ∨ (©π0p ∧ ¬©π1 p ∧ ¬©π0 or π1 p)

Definition 7.2
Let χOR be the set of Lor

�© formulas consisting of all instances of the following, where

• π0, π1, . . . varies over Π

• p varies over Φ

• σ varies over Πor.

(OR-Typ) Maybe0(p, π0, π1) ∨ Maybe1(p, π0, π1) Typicality

(OR-Reg0) Only0(p, π0, π1) → Maybe0(q, π2, π3) Regularity 0
(OR-Reg1) Only1(p, π0, π1) → Maybe1(q, π2, π3) Regularity 1

(OR-Real0) p ∧ Only1(q, π0, π1) → ♦(p ∧ Only0(q, π0, π1)) Realization 0
(OR-Real1) p ∧ Only0(q, π0, π1) → ♦(p ∧ Only1(q, π0, π1)) Realization 1

(OR-Persist0) Only0(p, π0, π1) → ©σ> → ©σMaybe0(q, π2, π3) Persistence 0
(OR-Persist1) Only1(p, π0, π1) → ©σ> → ©σMaybe1(q, π2, π3) Persistence 1

Theorem 7.1
χOR characterizes the OR program constructor.

Proof. —
We state one part as a lemma.

Lemma 7.2
For every Π-frame F ,

(FOR,ROR
F ) |= χOR

which is proved by just checking each of the axioms.

For the other direction, let G = (X, τ, {gσ}σ∈Πor) be a Πor-frame andR a refinement relation
on G, and suppose (G,R) |= χOR. To begin, we introduce some convenient terminology.

Definition 7.3
Given an w ∈ |G| and σ, σ′, we write

‖σ‖G (w) ≈R
∥∥σ′∥∥G (w′)

if either (a) both sides are undefined, or (b) both sides are defined and are R-related.
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Definition 7.4
Now, given a world x of G and an ordered pair (π0, π1) of primitive programs,

• x is a 0-world for (π0, π1)

‖π0‖ (x) ≈R ‖π0 or π1‖ (x)

• x is a 1-world for (π0, π1)

‖π1‖ (x) ≈R ‖π0 or π1‖ (x)

We’ll see the significance of these definitions as we proceed with the proof. Note that these are
not mutually exclusive: x can only be both a 0-world and a 1-world for (π0, π1) if ‖π0‖ (x) ≈R
‖π1‖ (x).

We establish the desired result by proving three successive claims:

1. For every x and every (π0, π1), x is either a 0-world or a 1-world (or both) for (π0, π1);

2. Every x is either a 0-world for every pair of programs (in which case we call x simply “a
0-world”) or a 1-world for every pair of programs (a “1-world”), or both;

3. The relation relating each 0-world x of G to ([x], 0) of (G/R)OR and each 1-world y to
([y], 1) (where [x] is the R-equivalence class of x) constitutes a Πor-bisimulation between
(G,R) and ((G/R)OR,ROR

G/R).

Thus G/R will suffice as a witness for the second requirement of characterization.

7.1 Claim 1

We state the first claim as a lemma:

Lemma 7.3
For any world x and any primitive programs π0, π1, if

((G, v), x) |= (©π0p ↔ ©π0orπ1p) ∨ (©π1p ↔ ©π0orπ1p)

for all v which respect R, then x is either a 0-world or a 1-world (or both) for (π0, π1)

Since the given formula is (OR-Typ), part of χOR (and thus (G, v) is assumed to validate it
at every world for every valuation v which respects R), we conclude that every world is either
a 0-world, a 1-world, or both, for each pair of programs (π0, π1). For notation, we define a
function

PreType : X ×Π×Π→ {{0} , {1} , {0, 1}}

by putting 0 ∈ PreType(x, π0, π1) if x is a 0-world for (π0, π1), and likewise for 1. The name
comes from the fact that we are assigning each world a “type” (either 0, 1, or both) according
to the behavior of or there. But this is the “pre-type”, since it relies on the choice of programs
π0, π1 – we now show that each world has a well-defined “type” over all pairs of programs.



Semantics of Nondeterministic Construction 66

7.2 Claim 2

Begin by noticing that, for each fixed world x, exactly one of the following must be true

• For every pair of programs (π, π′), PreType(x, π, π′) = {0, 1}

• There is some pair of programs (π, π′) where PreType(x, π, π′) 6= {0, 1}

In the first case, claim 2 is already done: x is a 0-world for every pair of programs and is
a 1-world for every pair of programs. So assume the second case: without loss of generality,
assume x is a 0-world for (π0, π1), but is not a 1-world for (π0, π1). In order to establish claim
2, we must now prove that x is a 0-world for every pair of programs. In symbols:

(∃π0, π1)(PreType(x, π0, π1) = {0}) =⇒ (∀π2, π3)(0 ∈ PreType(x, π2, π3))

So we have that ‖π0‖ (x) ≈R ‖π0 or π1‖ (x). So let’s case on the two possibilities from Defn. 7.3.

First handle the case where ‖π0‖ (x), ‖π0 or π1‖ (x) are defined and R-related. Assume
for contradiction that (π2, π3) is such that x is not a 0-world for (π2, π3). So either (a) only
one of ‖π2‖, ‖π2 or π3‖ is defined at x, or (b) both are defined but ‖π2‖ (x) is not R-related
to ‖π2 or π3‖ (x). Now, consider the following formula, which is straightforward logical con-
sequence of (OR-Reg0) (and, as the reader can check, is validated anywhere (OR-Reg0) is
validated):

(©π0p ∧ ¬©π1 p ∧ ©π0orπ1p) → (©π2q ↔ ©π2orπ3q). (OR-Reg0+)

We will obtain a contradiction by defining an R-respecting valuation which refutes this formula
at x. Put v(q) to be the R-equivalence class of whichever of ‖π2‖ (x) and ‖π2 or π3‖ (x) is
defined (for case (a)) or to the equivalence class of ‖π2‖ (x) (if in case (b)), and put v(p) to the
R-equivalence class of ‖π0‖ (x) (which, recall, is also the R-equivalence class of ‖π0 or π1‖ (x)).
Note that this valuation respects R. Then, x validates the antecedent of (OR-Reg0+), because
‖π0‖ (x) and ‖π0 or π1‖ (x) are in v(p) but ‖π1‖ (x), if defined, is not (x is not a 1-world). But x
does not validate the consequent of (OR-Reg0+): we defined v(q) so that only one of ‖π2‖ (x),
‖π2 or π3‖ (x) is in it. Thus we obtain the desired contradiction.

The proof where ‖π0‖ (x) and ‖π0 or π1‖ (x) is undefined is basically the same: put v(p)
to the R-equivalence class of ‖π1‖ (x) – which must be defined since x is not a 1-world – and
define v(q) in the same fashion as above. This will defeat the “negative” version of (OR-Reg0+)
(which also follows from (OR-Reg0)):

(¬©π0 p ∧ ©π1p ∧ ¬©π0orπ1 p) → (©π2q ↔ ©π2orπ3q). (OR-Reg0-)

We can conduct the analogous proof when x is instead a 1-world but not a 0-world for (π0, π1)
and get that x must be a 1-world for every pair of programs. So claim 2 is finished.

So we have seen that either x is either a 0-world for all pairs of programs, a 1-world for all
pairs of programs, or perhaps both. For the sake of notation, we’ll write the function

Type : X → {{0} , {1} , {0, 1}}

to mark each world with which case it falls into: 0 ∈ Type(x) iff x is a 0-world for all (π, π′),
and likewise for 1. Everything we’ve proven so far was to demonstrate that Type is well-defined
and total.
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7.3 Claim 3

Now for the final step: defining a Π-frame F such that

(G,R) 'Πc (FOR,ROR
F ).

To do this, we’ll take F = G/R, the quotient of G by R. So the worlds of (G/R)OR are pairs
([x], γ) where [x] is an R-equivalence class of G-worlds, and γ is 0 or 1. For the bisimulation,
define s by

(x, (A, γ)) ∈ s ⇐⇒ A = [x] and γ ∈ Type(x)

So, if Type(x) = {0}, then x is related to ([x], 0), if Type(x) = {1}, then x is related to
([x], 1), and if Type(x) = {0, 1}, then x is related to ([x], 0) and ([x], 1). To complete our proof,
we need to check that s satisfies the (σ-Back) and (σ-Forth) conditions for all σ ∈ Πor, that it’s
open and continuous, that it’s surjective and total, and that it respects the refinement relations
properly. The totality of s (i.e. for all x ∈ X there’s some world w of (G/R)OR such that xsw)
is a straightforward consequence of the totality of Type. Continuity is also straightforward: an
open set in the frame (G/R)OR is of the form U × {0, 1} for some U open in G/R. But notice
that

{x : xsw for some w ∈ U × {0, 1}} = {x : [x] ∈ U}
But this is just the preimage of U under the quotient map G → G/R, which is necessarily
continuous, so this set is open.

Surjectivity, openness, and respect for the Πor-dynamics are more complex, so we include
them as separate lemmas. For the sake of convenient notation, let J = (G/R)OR.

Lemma 7.4
s is surjective and open

Lemma 7.5
For every σ ∈ Πor, every world x of G and every world w of J ,

• If xsw and ‖σ‖G (x) is defined, then ‖σ‖J (w) is defined and ‖σ‖G (x) is related to
‖σ‖J (w) by s

• If xsw and ‖σ‖J (w) is defined, then ‖σ‖G (x) is defined and ‖σ‖G (x) is related to
‖σ‖J (w) by s

Note 7.1
Proving Lemma 7.4 is why we need to include (OR-Real0) and (OR-Real1). Similarly,
Lemma 7.5 makes (OR-Persist0) and (OR-Persist1) necessary.

Thus, we have:

s : G 'Πor J
Finally, we note that the bisimulation s interfaces with the refinement relations R and ROR

G/R
on G and J , respectively (the second condition of bisimulation of refined frames): for any
x, x′ ∈ X and any γ ∈ Type(x), γ′ ∈ Type(x′),

xRx′ ⇐⇒ [x] = [x′] ⇐⇒ ([x], γ)ROR
G/R([x′], γ′).

With that, we conclude:

s : (G,R) 'Πor ((G/R)OR,ROR
G/R).

�(Theorem 7.1)

And with that we’re done! In the conclusion of the chapter, we discuss some similarities with
our attempts to characterize Uω and U∞, and the epistemic meaning of the axioms.



Semantics of Nondeterministic Construction 68

8 Union

Finally, we indicate how a characterization of Uω+SKIP (recall Example 2.1) and U∞+SKIP might
proceed. This is not a finished characterization – this task encounters further issues. It’s not clear
that it’s possible to characterize Uω and U∞, with or without SKIP; a weakening of the definition
may be required. Nonetheless, all the below formulas are indeed validated by the augmented refined
frames for these constructors and begin to detail the fine structure. Throughout, π, π′, π0, π1, π2,
etc. range over Π; σ, σ′, σ0, σ1, etc. range over Π∪; and p ranges over Φ.

We use the following abbreviations.

Null ≡ ¬©skip∪skip >
Maybe0(p, π0, π1) ≡ ©π0p ↔ ©π0∪π1p

Maybe1(p, π0, π1) ≡ ©π1p ↔ ©π0∪π1p

Only0(p, π0, π1) ≡ (©π0p ∧ ¬©π1 p ∧ ©π0∪π1p) ∨ (¬©π0 p ∧ ©π1p ∧ ¬©π0∪π1 p)

Only1(p, π0, π1) ≡ (¬©π0 p ∧ ©π1p ∧ ©π0∪π1p) ∨ (©π0p ∧ ¬©π1 p ∧ ¬©π0∪π1 p)
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Towards a characterization of Uω + SKIP, we have the following axioms. The ‘Effect’ refers to
the corresponding model condition which arises from stipulating the axiom scheme at the level of
refined frames.

Axiom Schemes Effect

ϕ ↔ ©skipϕ
‖skip‖ is (essentially) the identity
function

p ∧ ¬Null → ©skip∪skipp
Executing skip ∪ skip keeps you in
the same R-equivalence class

Null(π0, π1) ∨ Maybe0(p, π0, π1) ∨ Maybe1(p, π0, π1)

For every world x and for ev-
ery pair of primitive programs
(π0, π1), x is either a “null world”,
a “0-world”, a “1-world”, or a “01-
world” for (π0, π1)

Only0(p, π0, π1) → Maybe0(p, π2, π3) Every world x is either a
null-world for every pair of
primitive programs, a 0-world for
every pair of primitive programs,
a 1-world for every pair of
primitive programs, or a 01-world
for every pair of primitive
programs

Only1(p, π0, π1) → Maybe1(p, π2, π3)

p → ♦(p ∧ Maybe0(q, π0, π1)) Every R-equivalence class
contains a null-world, a 0-world,
and a 1-world

p → ♦(p ∧ Maybe1(q, π0, π1))
p → ♦(p ∧ Null)

Only0(p, π0, π1) ∧ ©skip∪skip©σ q → ©σ∪σ′q The “nondeterministic choice” of
which program to do for (possibly
non-primitive) programs σ, σ′ is
consistent with the choice for
primitive programs

Only1(p, π0, π1) ∧ ©skip∪skip©σ′ q → ©σ∪σ′q
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Similarly, towards a characterization of U∞+ SKIP, we have the following axioms.

Axiom Schemes Effect

ϕ ↔ ©skipϕ
‖skip‖ is (essentially) the identity
function

p → ©skip∪skipp
Executing skip ∪ skip keeps you in
the same R-equivalence class

Maybe0(p, π0, π1) ∨ Maybe1(p, π0, π1)

For every world x and for ev-
ery pair of primitive programs
(π0, π1), x is either a “0-world”,
a “1-world”, or a “01-world” for
(π0, π1)

Only0(p, π0, π1) → Maybe0(p, π2, π3) Every world x is either a 0-world
for every pair of primitive
programs, a 1-world for every pair
of primitive programs, or a
01-world for every pair of
primitive programs

Only1(p, π0, π1) → Maybe1(p, π2, π3)

p → ♦(p ∧ Maybe0(q, π0, π1)) Every R-equivalence class
contains a null-world, a 0-world,
and a 1-world

p → ♦(p ∧ Maybe1(q, π0, π1))

Only0(p, π0, π1) ∧ ©skip∪skip©σ q → ©σ∪σ′q The “nondeterministic choice” of
which program to do for (possibly
non-primitive) programs σ, σ′ is
consistent with the choice for
primitive programs

Only1(p, π0, π1) ∧ ©skip∪skip©σ′ q → ©σ∪σ′q

The issue that arises for Uω is the issue of “nonstandard program constructor states”: we
can prove that for any (G,R) validating the schemes in the Uω + SKIP table above, the R-classes
contain worlds which interpret constructed programs like each of the worlds of {0, 1}∗ (the hidden
state space Γ of Uω). However, it’s not clear if there’s a way to stipulate in the object language
that these are all the worlds of the R-class. Thus we have no way of guaranteeing that the relation
we construct between (G,R) and ((G/R)Uω+SKIP,RUω+SKIP

G/R ) – which we’re trying to argue is a
bisimulation – is continuous or total: the R class could contain additional worlds not corresponding
to any program constructor state of a “genuine” Uω-augmented frame. So either we need to modify
our characterization, or give a weaker notion of ‘characterization’ which has similar properties but
isn’t so demanding.

U∞+SKIP suffers from the opposite problem: we don’t appear to have a way to require in the
object language that (G,R) has all the structure of a U∞-augmented refined frame. In particular,
it doesn’t seem that there’s any way to require all uncountably-many elements of {0, 1}N to have
analogues in each R-class, when we only have finite-length formulas to stipulate the existence of
such worlds. So (G,R) may validate any ∆ we propose, but still not have as much structure as a
U∞-augmented frame. Thus we have no way to guarantee that the relation we construct between
(G,R) and ((G/R)Uω+SKIP,RUω+SKIP

G/R ) is open or surjective.

Definitively resolving these questions will require more work than we’re able to do here. But
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hopefully doing so stimulates interesting further research, and deepens our knowledge of these
structures, their logic, and the phenomena they seek to capture.

Conclusion of Chapter 2

What we have seen in this chapter is a display of the difficulty of articulating the logic of program
constructors, and an indication of a possible way to attack this complex problem. Though it is
certainly not clear that all interesting program constructors admit characterization (or even if our
choice examples of Uω and U∞ do), this notion of characterization enjoyed greater success at
assigning meaningful object-language descriptions of program constructor behavior. In particular,
it succeeded where model- and frame-definition explicitly failed: the OR constructor. As we’ll
discuss a bit more in Sect. 9, it is hopefully the case that the definition of characterization given
here, even if it does not prove adequate for more elaborate program constructors, represents genuine
progress towards understanding program construction and the phenomena it seeks to model.

Let us close with a few observations. A theme that briefly emerged earlier in the chapter was the
opposite failures of model- and frame-definition to carve out the class of OR-augmented structures.
Model definition of DTMOR-BISIM failed principally because it was too easy to validate formulas at
the level of dynamic topological models: by cleverly designing a Πor-DTM (using carefully-chosen,
very specific valuations), we could make it “look like” a OR-augmented DTM (as far as Lor

�© can
express) without actually being (bisimilar to) a OR-augmented DTM at all. By doing this, we were
able to show that any definable class of DTMs containing all OR-augmented ones must also include
such “counterfeits”, showing that model definition was not going to be a fruitful approach. This
was opposite to the primary obstacle in the frame case: there it was too hard to satisfy formulas at
the frame level. Therefore, the only formulas ϕ which were indeed satisfied by all OR-augmented
DTMs said little of interest about OR-augmentation. Indeed, such sets of formulas defined classes
of frames which were much broader than anything we would want to consider “the class of OR-
augmented frames”. Opposite problem, same result. To address these issues simultaneously, we
needed an intermediate notion, one which provided some degree of quantification over valuations –
but not too much. Refined frame theory sits comfortably in that intermediate position (and coheres
nicely with the existing theory of bisimulations and program construction – hence our interest in
it), but it is by no means the only such notion.

Let us also notice the commonalities between the characterization of OR and the attempted
characterizations of Uω and U∞. At a high level, all characterizations must take the form of
“positing” structure using the object language: we want to pick ∆ such that any (G,R) validating
∆ must possess certain structure. In particular, we needed to guarantee that each of the worlds
of G has constructed behavior matching that of some C-augmented DTM (for whichever C we’re
concerned with). This was made explicit by the process of assigning “types” in Sect. 7, and
presumably a characterization of Uω or U∞ would proceed in the same way.

Going about this, we found the following structural commonalities between OR, Uω, and U∞,
which – returning to our epistemic interpretation – we can read as basic structural axioms of how
coin-flipping situations operate.

• To get started, each made use of a “typicality” axiom scheme which stated that each world
was either a “0-world” or a “1-world” (or a “null-world”, for Uω). In a coin-flipping situation,
there is some fact of the matter about how the next flip will come up: it will either be heads
or tails (or may fail in some way, if we’re allowing that as a possibility).

• Each had a “regularity” axiom, which expressed the indifference of the coin to the question
of which actions are being decided between. If our agent flips a coin while in a certain world
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x (where, say, the coin happens to come up heads), then it does not affect the coin flip at all
if she’s using it to decide between π0 and π1, or between π2 and π3. Though this axiom is
certainly obvious when we think about it, we should consider this a virtue: our mathematical
analysis has brought this key fact to light (one which certainly seems true of how we think
of coin flips), when it’s not at all clear that a purely philosophical reflection on coin-flipping
would have identified this as a relevant feature.

• Each has a “realization” axiom, which states that both heads and tails are live possibilities
(as far as the agent can possibly know before the flip). Our pretheoretic reflections identified
this as an important aspect of coin flipping (we said that a flip without this condition must
obviously be rigged), so it is reassuring to see it reflected in the formal results.

Beyond these, the remaining axiom schemes of these characterizations appear to express “implemen-
tation details” peculiar to the given constructor. For instance, the (OR-Persist0) and (OR-Persist1)
axioms were made to account for the fact that OR only permits one flip, so there needs to be some
reflection in the theory of this. But it doesn’t seem to say anything essential about coin-flipping.
Similarly, some of the axioms we used to try to make sense of Uω and U∞, as well as some of the is-
sues preventing a full characterization, seem to be rooted more in the details of how we represented
them mathematically than anything worthwhile philosophically.

So what these three commonalities represent are some features inherent to properly-conducted
coin flips, which a knowledgeable agent (usually implicitly and unconsciously) expects to be the
case when navigating such a situation. Though modest, we have managed to isolate, analyze, and
formalize a piece of common reason. Such is our business.

9 Conclusion and Future Work

In addition to thoroughly exploring the topic of epistemic agents flipping coins, our interest was
also to significantly develop dynamic topological logic (specifically this “agent DTL” variety), and
hopefully make way for even deeper and more striking results. Let us close by identifying just some
of the fascinating questions which might take the present work as their point of departure.

Though we were able to obtain some satisfying results, the project initiated here is by no means
finished. The characterizations of Uω and U∞ remain at large. As indicated, it’s unclear whether
the current notion of characterization will suffice, or whether further modification is needed. More-
over, we did not attempt any systematic development of STAR program constructors (beyond giving
a definition as example). Certainly, such program constructors will have their unique difficulties
and considerations. I suspect they will admit a useful epistemic interpretation as well, which also
deserves development.

We briefly indicated with the idea of a C +SKIP program constructor that these constructions
might be combined. If we wish to fully implement PDL program construction in the dynamic-
topological setting, this requires the addition of multiple program constructors. It remains to
be seen exactly how the “nesting” of program constructors works: what’s the difference between
(MC1)C2 and (MC2)C1 , and how do they interact? A full account of PDL constructors also will
require more development of sequencing and test programs; for instance, it’s not clear how to
define test programs at the frame level (at least their PDL semantics make essential reference to
the valuation), so it’s unclear whether “characterization” even makes sense – perhaps we need a
different notion for such constructions.

There seems to be opportunities for developing this body of work from the standpoint of the
epistemic interpretation: if dynamic topological structures function as models of an agent reasoning
in a situation (at least what they’re able to do and know), it is perhaps worth investigating what
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other features can be encoded. We indicated possibilities for modelling not just the agent’s capacity
for knowledge but rather their actual knowledge (using subset space semantics), but this is just
the beginning. Can we develop a notion of ‘belief’ in this setting? Can we expand this to encode
multiple agents and possibilities for common knowledge? Can we make our agents more realistic
(e.g. not logically omniscient) or make other features more plausible (e.g. account for the possibility
of unreliable or contradictory evidence)? These are all questions worth exploring more. Moreover,
there is much potential for modelling complex phenomena using program constructors: we said
that the execution of σ0 ∪ σ1 was the agent “deciding” whether to do σ0 or σ1 – can we give a
richer and more systematic account of how program constructors provide a way for the agent to
consider several actions and decide to undertake one of them (or some combination of them)?24 One
might also expand on the somewhat vague intuition that program constructors generally represent
“devices” of some kind, and use this framework to develop more of a theory of the capacity of
agents to reason about the status of their “tools”. This perhaps promises an interesting theory of
an agent’s epistemic standpoint in relation to the technologies they employ to achieve things in the
world (of which coin-flipping is only a very basic example).

We could also expand more on the mathematical aspects of this work. We mentioned that
the definition of “program constructor” is quite broad – are there meaningful requirements we can
place on program constructors,25 and can we use these to prove interesting properties about their
behavior? We’ve also seen numerous operations that can be performed on DTMs – quotienting,
collapsing, “forgetting” about structure, applying program constructors – much work remains to be
done to develop this theory. In particular, we have only just begun to give a mathematical theory
of bisimulations and refinement relations – undoubtedly there is much which could be generalized
and expanded upon.

Finally, we have mostly neglected the connections to computer science, which formed the origi-
nal motivation behind PDL. Our use of the term “program constructor” suggests that this presents
a theory for how to combine programs into more complex programs. Common constructions in the
semantics of programming languages (such as loops and conditionals) seem to be definable as pro-
gram constructors; does it do us any benefit to understand “programming in dynamic topological
models”? Explicitly modelling an agent’s capacity for knowing pieces of information as they go
about executing programs certainly seems relevant to considerations in cryptography, programming
language theory, etc., and I suspect that there might be significant interest in this development.

These are just some possibilities. A central highlight of this work is its dense connections to
other disciplines, and there are undoubtedly other connections not listed here. But hopefully this
provides a jumping-off point to a wide array of fascinating and invigorating topics.

24Do some program constructors make choices which are more “morally praiseworthy” or “right” than others? Can
we make sense of such a thing in this framework?

25More sophisticated, perhaps, than the only such property we dealt with: indiscreteness.
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A Sect. 1 Proofs

(Prop. 1.4)
The axiom scheme (U) defines the class of “union-frames”: given a pair (X, {Rσ}σ∈Π∪) where
X is a set and Rσ ⊆ X ×X for all σ ∈ Π∪,26 the following are equivalent:

1. Rσ0∪σ1 = Rσ0 ∪Rσ1 for all σ0, σ1 ∈ Π∪

2. For all valuation functions v : Φ→ P(X),

(X, {Rσ} , v) |= [σ0 ∪ σ1]ϕ ↔ [σ0]ϕ ∧ [σ1]ϕ

for all σ0, σ1 ∈ Π∪ and all ϕ ∈ L∪PDL(Π).

Proof. —
To prove the first statement implies the second: letting v be arbitrary and putting M =
(X, {Rσ} , v), note that

(M,x) |= [σ]ϕ iff Rσ(x) ⊆ JϕKM

where JϕKM , as usual, denotes the set of worlds x′ ∈ X which validate ϕ. So then

(M,x) |= [σ0 ∪ σ1]ϕ ⇐⇒ Rσ0∪σ1(x) ⊆ JϕKM
⇐⇒ Rσ0(x) ∪Rσ1(x) ⊆ JϕKM (assumption)

⇐⇒ Rσ0(x) ⊆ JϕKM and Rσ1 ⊆ JϕKM (set theory)

⇐⇒ (M,x) |= [σ0]ϕ and (M,x) |= [σ1]ϕ

⇐⇒ (M,x) |= [σ0]ϕ ∧ [σ1]ϕ (relational semantics for ∧ )

and our result follows.

For the other direction, we prove the contrapositive: that if Rσ0∪σ1 6= Rσ0 ∪ Rσ1 , then
there’s some v such that (X, {Rσ} , v) refutes (U). If σ0, σ1 are such that Rσ0∪σ1 6= Rσ0 ∪Rσ1 ,
then there are two possibilities: either there is some (x, x′) in Rσ0∪σ1 but not in Rσ0 ∪Rσ1 , or
vice versa.

If x and x′ are related by Rσ0∪σ1 but not Rσ0 ∪ Rσ1 , then, for some p ∈ Φ, pick v such
that v(p) = Rσ0(x) ∪ Rσ1(x). Then, again letting M = (X, {Rσ} , v), we can check that
(M,x) |= [σ0]p ∧ [σ1]p immediately. However, (M,x) 6|= [σ0 ∪ σ1]p since p is not true at x′ and
xRσ0∪σ1x

′. So the biimplication of (U) fails. The other case is analogous.

�

(Prop. 1.5)
For any set Π, PDL0 is a sound and complete axiomatization of LPDL(Π) with respect to the
class of all Π-DTMs: for all ϕ ∈ LPDL(Π),

`PDL0 ϕ ⇐⇒ M |= ϕ for all Π-DTMs M
26We’ll call such a pair (X, {Rσ}) a “Π∪ relational frame”.



Semantics of Nondeterministic Construction 76

Proof. —
The soundness result is proved as Theorem 2 of [5]. That proof also proves the completeness
of the class of Π-DTMs with respect to a similar axiom system, by specifying a model trans-
formation which takes a Π-relational PDL model and produces a Π-DTM refuting the same
formulas. However, this model transformation assumes that the input model is serial (Rπ(x)
is nonempty for all π, x), and produces a serial Π-DTM as output (‖π‖ is a total function
for all π). Because of this, the resulting Π-DTMs cannot refute the “seriality axiom scheme”
[π]ϕ → 〈π〉ϕ, and therefore this axiom scheme must be included the axiom system.

We drop the assumption of seriality entirely, and give an alternative model transformation
which does not assume its input Π-relational model is serial, and, in general, does not produce
serial Π-DTMs. Given an arbitrary Π-relational model M = (X, {Rπ} , v, define a Π-DTM M
with

• State space X ×XN: the worlds of M are pairs (x, S) where x is a world of M and S is
an infinite stream of M -worlds (we use all the same notations as before).

• The topology on M is the product topology of the discrete topology on X (τX = P(X))
with the indiscrete topology on XN (τXN =

{
∅, XN}). So the open sets are exactly those

of the form A×XN for any A ⊆ X (including A = ∅).

• For π ∈ Π, the partial function ‖π‖ : X ×XN ⇀ X ×XN is given by

‖π‖ (x, x′_xs) =

{
(x′, xs) if x′ ∈ Rπ(x)

undefined otherwise

In words: to execute π from (x, S), take the first element x′ from the stream S. If it
happens to be the case that xRπx

′, then executing π from (x, S) leads to the M-world
‖π‖ (x, S), which has M -state x′ and has the tail xs of S (S with the x′ at the front
removed) as its infinite stream. If the first element of S is not in Rπ(x), then π is
undefined at (x, S).

• Valuation V : Φ→ P(X ×XN) given by

V (p) = v(p)×XN

So now we claim:27

Claim 2
If M is the Π-DTM produced from M by the above transformation,

ThPDL(Π;M) = ThPDL(Π;M).

Proof. —
We show that

(M,x) |= ϕ ⇐⇒ (M, (x, S)) |= ϕ for all S ∈ XN

for all x, ϕ, and the claim follows. Proceed by structural induction on ϕ.

The case where ϕ is a primitive proposition is directly guaranteed by the definition of
V , and the inductive steps for ∧ and ¬ are trivial. Now assume inductively that

(M, z) |= ψ ⇐⇒ (M, (z, t)) |= ψ for all S ∈ XN

27This is numbered as “Claim 2” for consistency with the proof of Theorem 3.7 below.
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for arbitrary z ∈ X and some ψ ∈ LPDL(Π). Let π be arbitrary.

If (M,x) |= 〈π〉ψ, then there must be some x′ ∈ Rπ(x) such that (M,x′) |= ψ. By the
inductive hypothesis, we have

(M, (x′, S′)) |= ψ for all S′ ∈ XN. (*)

So now pick arbitrary xs ∈ XN and consider the world

(x, x′_xs) ∈ X ×XN.

By definition of ‖π‖ and the fact that x′ ∈ Rπ(x), we have

‖π‖ (x, x′_xs) = (x′, xs)

But by (*) we get that (M, (x′, xs)) |= ψ and therefore

(M, (x, x′_xs)) |=©πψ

Now, if S ∈ XN is arbitrary, observe that any open set U ⊆ X ×XN,

(x, x′_xs) ∈ U iff (x, S) ∈ U

by the fact that τXN is indiscrete. Since no open set separates (x, x′_xs) from (x, S) and
(M, (x, x′_xs)) |=©πψ, it follows that

(M, (x, S)) |= ♦©π ψ

as desired.

If (M,x) 6|= 〈π〉ψ, then all elements of Rπ(x) (if any) refute ψ. Therefore, for any
S ∈ XN, ‖π‖ (x, S) is either undefined or is a ¬ψ-world by the inductive hypothesis. Thus
(M, (x, S)) |= ¬©π ψ. So, since {x} ×XN is an open set,

(M, (x, S)) |= �¬©π ψ,

which is equivalent to
(M, (x, S) 6|= ♦©π ψ.

Since S is arbitrary, the claim is proved.

�(Claim)

So now we have all we need to prove completeness. If ϕ is a nontheorem of PDL0, then, by
Prop. 1.3, we can obtain a Π-relational model M with a world x such that

(M,x) 6|= ϕ.

Apply the above model transformation, and obtain M. Observe by Claim 1 that

(M, (x, S)) 6|= ϕ

for arbitrary S ∈ XN. We have refuted an arbitrary nontheorem of PDL0 on a Π-DTM, so
completeness is proved.

�(Prop)
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B Sect. 3 Proofs

(Prop. 3.1)
For every Π-DTM M, every world x ∈ |M|, every program constructor C, and every program
constructor state γ ∈ Γ,

Th�©(Π;M, x) = Th�©
(
Π;MC , (x, γ)

)
Proof. —

Recall the Π-bisimulation (introduced in Example 4.1) TCM : M 'Π MC which relates x to each
(x, γ). By Theorem 4.2, we obtain the desired result.

�

(Corollary 3.1.1)
For every Π-DTM M and every program constructor C,

Th�©(Π;M) = Th�©
(
Π;MC

)
.

Proof. —
Recall the Π-bisimulation (introduced in Example 4.1) TCM : M 'Π MC . By Corollary 4.2.1,
we obtain the desired result.

�

(Corollary 3.1.2)
For all M, C, x, γ, γ′,

Th�©(Π;MC , (x, γ)) = Th�©(Π;MC , (x, γ′))

Proof. —
By two applications of Prop. 3.1,

Th�©(Π;MC , (x, γ)) = Th�©(Π;M, x) = Th�©(Π;MC , (x, γ′)).

�

(Prop. 3.2)
Let M be a Π-DTM, C a program constructor, and π ∈ Π.

‖π‖M is continuous (open) iff ‖π‖MC is continuous (open)

Proof. —
As usual, let (X, τX) and (Γ, τΓ) be the topological spaces underlying M and C, respectively.

Assume fπ continuous with respect to τX . Pick an arbitrary open set O ⊆
∣∣MC

∣∣. By the
definition of the product topology, we can write O as

O =
⋃
i∈I

Ui × Vi

for some sets Ui ⊆ X and Vi ⊆ Γ which are open with respect to their respective topologies.
But recall how ‖π‖MC was defined in Defn. 2.1, and observe:

‖π‖−1
MC (Ui × Vi) = (‖π‖−1

M (Ui))× Vi = (f−1
π (Ui))× Vi.
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By the continuity of fπ, we get that f−1
π (Ui) is open in τX , and thus that f−1

π (Ui)× Vi is open
with respect to the product topology, for all i ∈ I. Since we’ve managed to write ‖π‖−1

MC (O)
as the union of open sets, it itself is open. Since O was arbitrary, ‖π‖MC is continuous.

Conversely, supposing that ‖π‖MC is continuous and picking open U ⊆ X, observe that

f−1
π (U) = pr1(‖π‖−1

MC (U × Γ))

where pr1 : X × Γ → X is the first projection function. By the continuity of ‖π‖MC , we get
that ‖π‖−1

MC (U × Γ) is open. One can readily check (using similar reasoning about product
topologies as above) that pr1 is open, in the sense that pr1(A) is open whenever A is open.
Thus we conclude f−1

π (U) must be open. Since U was arbitrary, fπ is continuous.

Proving the result about openness instead of continuity is almost the same throughout: just
replace all instances of f−1

π with fπ, ‖π‖−1
MC with ‖π‖MC , and appeal instead to the continuity

of pr1, instead of its openness.

�

(Prop. 3.3)
Let C be either Uω or U∞ and suppose M is some Π-DTM, w a world of MC , ϕ an L∪�©
formula, and σ0, σ1 ∈ Π∪ such that (MC , w) |=©σ0ϕ but (MC , w) |=©σ1¬ϕ. Then,

(MC , w) |= ♦©σ0∪σ1 ϕ ∧ ♦©σ0∪σ1 ¬ϕ.

Proof. —
For concreteness, we prove the result for U∞; the exact same proof may be used for Uω.

Recall that U∞ is based on the indiscrete topology τΓ = {∅,Γ} (where, recall, Γ is {0, 1}N,
so every open set of MU∞ (for any M) is of the form U ×Γ for some open U ⊆ |M|. Therefore,
in order to show that (MC , (x, γ)) |= ♦ψ for some ψ, it suffices to find some γ′ ∈ Γ such that

(MU∞, (x, γ′)) |= ψ.

This is because, as we established, there cannot be an open set containing (x, γ) but not (x, γ′),
so, since the latter is a ψ-world, every open neighborhood of (x, γ) contains a ψ-world.

In this case, the ψ’s we’re interested in are ©σ0∪σ1ϕ and ©σ0∪σ1¬ϕ. Supposing that we
have a w = (x, S) as given in the statement of the proposition, observe:

‖σ0 ∪ σ1‖MU∞ (x, 0_S) = ‖σ0‖MU∞ (x, S).

But we know that ‖σ0‖MU∞ is a ϕ-world by the assumption that (MU∞, (x, S)) |= ©σ0ϕ.
Therefore, we get

(MU∞, (x, 0_S)) |=©σ0∪σ1ϕ

and thus, by the above,
(MU∞, (x, S)) |= ♦©σ0∪σ1 ϕ.

Using the exact same logic for σ1 and 1_S, we obtain

(MU∞, (x, S)) |= ♦©σ0∪σ1 ¬ϕ

and we’re done.

�
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(Lemma 3.4)
Let C be either Uω or U∞. Then, for any Π-DTM M, any σ0, σ1 ∈ Π∪ and any ϕ ∈ L∪PDL,

MC |= ♦©σ0ϕ ∨ ♦©σ1ϕ → ♦©σ0∪σ1ϕ

Proof. —
Pick an arbitrary w = (x, S) such that (MC , w) |= ♦©σ0 ϕ ∨ ♦©σ1 ϕ. Let’s assume without
loss of generality that

(MC , w) |= ♦©σ0 ϕ,

and then the other case is similar. Given what we know about the topology of MC , we know
that there must be some S′ ∈ Γ such that

(MC , (x, S′)) |=©σ0ϕ.

Which implies ‖σ0‖MC (x, S′) is defined and is a ϕ-world. Observe then that

‖σ0 ∪ σ1‖MC (x, 0_S′) = ‖σ0‖MC (x, S′)

so
(MC , (x, 0_S′)) |=©σ0∪σ1ϕ.

Since every open set containing (x, 0_S′) also contains (x, S), we finally get

(MC , (x, S)) |= ♦©σ0∪σ1 ϕ.

Since w was arbitrary, the result follows.

�

C Subsect. 3.3 Proofs

(Lemma 3.5)
Let C be either Uω or U∞. Then, for any Π-DTM M, any σ0, σ1 ∈ Π∪ and any ϕ ∈ L∪PDL,

MC |= ♦©σ0∪σ1ϕ → ♦©σ0ϕ ∨ ♦©σ1ϕ

Proof. —
Let w = (x, S) be any world of MC which validates ♦©σ0∪σ1

ϕ. So, by the topology on MC

(and particularly the fact that τΓ is indiscrete), there must be some S′ ∈ Γ such that

(MC , (x, S′)) |=©σ0∪σ1ϕ.

Notice that, if C = Uω, this precludes the possibility of S′ = ε. So S′ is nonempty28 – assume
without loss of generality that its first element is 0. Consequently,

‖σ0 ∪ σ1‖MC (x, S′) = ‖σ0‖MC (x, S′′)

where S′′ is the rest of S′. We therefore get that

(MC , (x, S′′)) |=©σ0ϕ.

Since (x, S′′) is in every open set containing (x, S), we get

(MC , (x, S)) |= ♦©σ0 ϕ

and the result follows. The case where the first element of S′ is 1 is handled similarly. We
established that S′ 6= ε, so it must have a first element, which must be either 0 or 1. So we’ve
established the desired disjunction.

28This is, of course, always true if C = U∞.
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�

(Theorem 3.6)
PDL0 + (U) is a sound and complete axiomatization of L∪PDL with respect to DTMUω

(Theorem 3.7)
PDL0 + (U) is a sound and complete axiomatization of L∪PDL with respect to DTMU∞

Proof. —
Throughout, C is either Uω or U∞, and Γ is either {0, 1}∗ or {0, 1}N, as appropriate. For
either, τΓ = {∅,Γ}. Besides the one point where we mention Uω specifically, it won’t matter
which one C is.

The soundness result is established in Prop. 1.5, Lemma 3.4, and Lemma 3.5.

For completeness, we will coopt the model transformation from before (originally intro-
duced in the proof of Prop. 1.5) to turn a completeness result for relational models (which we
already have) into the desired result for augmented DTMs. We’ll make use of ‘Claim 2’ from
that proof as well. Our proof breaks into three steps.

1. Take an arbitrary nontheorem ϕ of PDL0 + (U) and refute it on some union-model29 M

2. Consider M as merely a Π-relational model (i.e. forget about the fact that it interprets
constructed programs σ0 ∪ σ1), then transform it to a Π-DTM M in a LPDL(Π)-theory-
preserving way

3. Argue that M and MC have the same L∪PDL theories, and thereby conclude.

Each of these three steps has a corresponding claim, which together are enough to prove
the theorem (we prove the claims at the end of the proof). Let’s begin. Start with a formula
ϕ ∈ L∪PDL which is not a theorem of PDL0 + (U). We may then apply the following result.

Claim 1
For every nontheorem ϕ of PDL0 + (U), there exists a union-model M such that

M 6|= ϕ.

Our ultimate goal is to produce a Π∪-DTM N (particularly one produced by the program
constructor C) which refutes a given nontheorem ϕ. What we have at this point is a Π∪-
relational model M which refutes ϕ. So we need to turn M into N in a L∪PDL-theory-preserving
way, so N refutes ϕ too. How we’ll go about this is first forgetting about the interpretation
of constructed programs σ0 ∪ σ1 in M , and just consider it as a Π-relational model. We’re
not really forgetting, of course: the fact that M is a union-model uniquely determines its
interpretation of constructed programs from its interpretation of primitive ones. We’ll use this
fact later.

The reason we want to think of M as a Π-relational model instead of a Π∪-relational
model is that we have a theory-preserving way to turn Π-relational models into Π-DTMs: the
above-mentioned model transformation. We don’t want to “copy over” the full Π∪ structure
of M via this process and produce a Π∪-DTM right away,30 because we specifically want the
interpretation of ∪ in the Π∪-DTM we produce to come from the program constructor, not
M . So, for this step, we’ll just produce a Π-DTM to feed into C later. Here’s Claim 2 again,
though note we’ve formulated it slightly more strongly (this is what’s proved).

29See Defn. 1.7.
30Though the model transformation is in fact general enough that this would be well-defined. It just wouldn’t

produce a DTM in DTMC , which is what we want.



Semantics of Nondeterministic Construction 82

Claim 2
If M is the Π-DTM produced from M = (X, {Rπ} , v) via the transformation specified in
the proof of Prop. 1.5, then for all x ∈ X and all S ∈ XN,

ThPDL(Π;M,x) = ThPDL(Π;M, (x, S)).

Recall, for later reference, that if M = (X, {Rπ} , v), then |M| = X ×XN, V (p) = v(p) ×XN

and ‖π‖M (x, x′_xs) = (x′, xs) if x ∈ Rπ(x) and is undefined otherwise.

So then, as mentioned, we use the program constructor C to interpret all of Π∪ again:
if the previous step produced the Π-DTM M, then MC is a Π∪-DTM, and specifically is a
member of DTMC , the class from which we’re trying to find a DTM refuting ϕ. So if we can
just prove that MC does indeed refute ϕ, then we’ll be done.

We’ll prove a bit more than that, in fact. Notice that the state space of MC is X×XN×Γ31,
i.e. it consists of triples (x, S, γ) where x ∈ X (the state space of M), S ∈ XN (used to encode
the possible nondeterminism of the Π-programs), and γ ∈ Γ (used to resolve ∪s). It turns out
that the L∪PDL theory only depends on the first coordinate.

Claim 3
For every point x of X, every S ∈ XN, and every γ ∈ Γ,

ThPDL(Π∪;M,x) = ThPDL(Π∪;MC , (x, S, γ))

From there, we’re basically done: M 6|= ϕ by hypothesis, so there must be some x ∈ X such
that (M,x) |= ¬ϕ. By Claim 3 (and the fact that ϕ ∈ L∪PDL), we have that for arbitrary
S ∈ XN and γ ∈ Γ, (MC , (x, S, γ) |= ¬ϕ. It follows that

MC 6|= ϕ

and we have completeness. Now to prove the claims.

Proof (Claim 1). —
Section 4 of [7] provides a “strong completeness” result for the (K) axiom system with
respect to the class of all single-modality relational frames, and sketches how to generalize
this proof to modal logics of arbitrary “similarity type”. Since PDL0 is the least normal
modal logic over this suite of modalities, the strong completeness result applies. Here is
that result, instantiated for our circumstances (in our notation):

For all sets ∆ ⊆ L∪PDL and all formulas ϕ ∈ LPDL, if ∆ |= ϕ,32 then ∆ `PDL0

ϕ.33

This generalizes Prop. 1.3, which is simply the ∆ = ∅ case. We’ll be interested in the
case where ∆ is the set of all instances of (U). If we instantiate ∆ to be that, then the
contrapositive of the above becomes:

If ϕ is a nontheorem of PDL0 + (U), then ∆ 6|= ϕ.

31Technically, (X ×XN)× Γ. We suppress this distinction.
32I.e. for all Π∪-relational frames F , all valuations v, and all points x of F , if ((F, v), x) |= ∆, then this implies

((F, v), x) |= ϕ.
33I.e. we can deduce ϕ in the proof system PDL0, if we’re additionally allowed to take the formulas of ∆ as axioms.
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The antecedent could alternatively be expressed ∆ 6`PDL0 ϕ or 6`PDL0+∆ ϕ

But what does ∆ 6|= ϕ mean? It means that there are Π∪-relational frames F such
that (F, v) |= ∆ for every v : Φ → P(X), but where (F, v) 6|= ϕ for some v. But recall
Prop. 1.4 (and recall that ∆ is the set of all instances of (U)), which gave us that

(F, v) |= ∆ ⇐⇒ F is a union-frame

Where a “union-frame” was a pair (X, {Rσ}σ∈Π∪) where Rσ0∪σ1 = Rσ0 ∪Rσ1 for all σ0, σ1.
Notice, then, that such a “union-frame” equipped with any valuation constitutes a union-
model (the definition of a union-model – Defn. 1.7 – does not restrict the valuation at all).
So, putting this all together (and assuming we have our nontheorem ϕ on hand, as before),
we have:

There is a union-frame F where (F, v) 6|= ϕ.

I.e. there’s a union-model refuting ϕ.

� (Claim 1)

Proof (Claim 3). —
So begin by observing – in light of Claim 2 and Prop. 3.1, respectively – that the model
transformation M 7→ M and the application of the program constructor M 7→ MC both
preserve pointwise LPDL(Π) theories:

For all x ∈ X, all S ∈ XN, and all γ ∈ Γ,

ThPDL(Π;M,x) = ThPDL(Π;M, (x, S)) = ThPDL(Π;MC , (x, S, γ)).

So this is almost all of Claim 3. It only remains to inductively extend this conclusion to
〈σ0 ∪ σ1〉. More formally, we assume for some ψ ∈ L∪PDL and some σ0, σ1 ∈ Π∪ that for all
z,

• (M, z) |= 〈σ0〉ψ iff (MC , (z, S, γ)) |= 〈σ0〉ψ for all S ∈ XN and all γ ∈ Γ (IH1), and

• (M, z) |= 〈σ1〉ψ iff (MC , (z, S, γ)) |= 〈σ1〉ψ for all S ∈ XN and all γ ∈ Γ (IH2),

and then prove

(M,x) |= 〈σ0 ∪ σ1〉ψ iff (MC , (x, S, γ)) |= 〈σ0 ∪ σ1〉ψ for all S, γ.

To prove the forward direction, assume (M,x) |= 〈σ0 ∪ σ1〉ψ. So then, since M is
a union-model, either xRσ0x

′ or xRσ1x
′ for some x′ which validates ψ. Without loss of

generality, assume xRσ0x
′. So then we have

(M,x) |= 〈σ0〉ψ

By (IH1), we get that

(MC , (x, S, γ)) |= ♦©σ0 ψ for all S, γ.

Now, the open subsets of X ×XN × Γ are exactly those of the form U ×XN × Γ for any
arbitrary subset U ⊆ X (because X has the discrete topology, whereas the latter two have
the indiscrete topology). Subsequently, {x} ×XN × Γ is an open set. Consequently, what
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it means for (x, S, γ) to validate ♦©σ0 ψ is that there’s some world of the form (x, S′, γ′)
– same first coordinate, possibly different second and third – such that

(MC , (x, S′, γ′)) |=©σ0ψ.

Therefore, we have that ‖σ0‖MC (x, S′, γ′) is defined and is a ψ-world. Consider now, if we
executed σ0 ∪ σ1 from (x, S′, 0_γ′). Then recall

‖σ0 ∪ σ1‖MC (x, S′, 0_γ′) = ‖σ0‖MC (x, S′, γ′).

So we then obtain that
(MC , (x, S′, 0_γ′)) |=©σ0∪σ1ψ

which, since no open set can separate (x, S′, 0_γ′) from (x, S, γ), gives us

(MC , (x, S, γ)) |= ♦©σ0∪σ1 ψ

as desired.

Finally, for the other direction, suppose (MC , (x, S, γ)) |= ♦©σ0∪σ1 ψ for all S, γ. So
then, again by what we know about the topology, there must be some S′ and some γ′ such
that

(MC , (x, S′, γ′)) |=©σ0∪σ1ψ.

Note that, if C is Uω, γ cannot be ε. Now, there must be a first element of the string/stream
γ′. Assume without loss of generality that it’s 0. So

‖σ0 ∪ σ1‖MC (x, S′, γ′) = ‖σ0‖MC (x, S′, γ′′)

where γ′′ is the rest of γ′. So since the left-hand side is a ψ-world by assumption, so too
much be the right-hand side. In other words,

(MC , (x, S′, γ′′)) |=©σ0ψ.

Since (x, S′, γ′′) cannot be separated from any other element of {x}×XN×Γ by any open
set, we have that

(MC , (x, S, γ)) |= ♦©σ0 ψ for all S, γ.

Apply (IH1) to get
(M,x) |= 〈σ0〉ψ

so there must be some ψ-world x′ ∈ X such that xRσ0x
′. Since M is a union-model, this

immediately implies xRσ0∪σ1x
′, and so

(M,x) |= 〈σ0 ∪ σ1〉ψ.

The case where the first element of γ′ is 1 similarly proves (M,x) |= 〈σ0 ∪ σ1〉ψ as well.
With that, our induction carries through.

�(Claim 3)

�
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D Sect. 4 Proofs

(Prop. 4.1)
Suppose s ⊆ X × Y is a binary relation between two topological spaces (X, τX) and (Y, τY ).
(1) and (2) are equivalent to each other, and (3) and (4) are equivalent to each other.

(1) s is continuous: for every U ′ ∈ τY , its preimage s−1(U ′) = {x ∈ X : xsy for some y ∈ U ′}
is in τX

(2) s satisfies (Back): If y ∈ U ′ ∈ τY and xsy, then there is a U ∈ τX such that x ∈ U ⊆
s−1(U ′).

(3) s is open: for every U ∈ τX , its image s(U) = {y ∈ Y : xsy for some x ∈ U} is in τY

(4) s satisfies (Forth): If x ∈ U ∈ τX and xsy, then there is a U ′ ∈ τY such that y ∈ U ′ ⊆
s(U).

Proof. —
For (1) =⇒ (2): If s is continuous and y ∈ U ′ ∈ τY and xsy, then put U = s−1(U ′). Observe
that x ∈ U and U ∈ τX and, of course, U ⊆ s−1(U ′).

For (2) =⇒ (1): Suppose s satisfies (Back), then pick U ′ ∈ τY . To show s−1(U ′) is open,
pick arbitrary x ∈ s−1(U ′), and let y be one element of U ′ such that xsy (there must be
at least one such element, by definition of s−1(U ′)). By (Back), obtain a U ∈ τX such that
x ∈ U ⊆ s−1(U ′). So x is in the interior of s−1(U ′). Since x was arbitrary, every element of
s−1(U ′) must be in the interior, i.e. s−1(U ′) is open.

For (3) =⇒ (4): If s is open and x ∈ U ∈ τX and xsy, then putting U ′ = s(U) works.

For (4) =⇒ (3): Suppose s satisfies (Forth) and U ∈ τX . Then pick arbitrary y ∈ s(U),
and let x be such that xsy. From (Forth) obtain a U ′ ∈ τY such that y ∈ U ′ ⊆ S(U). So y is
in the interior of U ′, and so U ′ is open.

�

(Theorem 4.2)
If (M, x)→| Σ (N, y), the following equality holds:

Th�©(Σ;M, x) = Th�©(Σ;N, y).

Proof. —
The proof is by a straightforward induction on ϕ ∈ L�©(Σ). (Base) guarantees that (M, x) and
(N, y) agree on primitive propositions. The ∧ and ¬ inductive steps carry through straight-
forwardly.

For �, inductively assume that (M, x′) |= ψ iff (N, y′) |= ψ for all (x′, y′) ∈ s. Suppose
(M, x) |= �ψ. Then there is an open U ⊆ JψKM containing x. By (Forth), obtain a U ′ with
y ∈ U ′ ⊆ s(U). Then observe by the inductive hypothesis that s(U) ⊆ JψKN, so (N, y) |= �ψ.
The other direction is similar, using (Back) instead of (Forth).

For ©σ, inductively assume that (M, x′) |= ψ iff (N, y′) |= ψ for all (x′, y′) ∈ s. Suppose
(M, x) |= ©σψ. Then ‖σ‖M (x) is defined and is a ψ-world. Use (σ-Forth) and the inductive
hypothesis to get that ‖σ‖N (y) is defined and is a ψ-world. Hence (N, y) |=©σψ. Again, the
other direction is similarly achieved using (σ-Back).

�
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(Corollary 4.2.1)
If M 'Σ N,

Th�©(Σ;M) = Th�©(Σ;N).

Proof. —
Call the surjective bisimulation witnessing this s. If M |= ϕ, then (M, x) |= ϕ for each world x
of M. For any y ∈ s(x), we have by Theorem 4.2 that (N, y) |= ϕ. Since s is surjective, every
y ∈ |N| is in s(x) for some x, and we thereby conclude that N |= ϕ. The opposite direction
proceeds similarly, using the totality of s and Theorem 4.2.

�

(Theorem 4.3)
The class DTMOR-BISIM is not definable.

Proof. —
As described above, we give some Πor-DTM Nbad and some Π-DTM P such that

(a) POR ∈ DTMOR-BISIM

(b) Nbad 6∈ DTMOR-BISIM

(c) Thor
�©(POR) ⊆ Thor

�©(Nbad)

And then we’ve seen how these premises combined contradict the definability of DTMOR-BISIM.
Recall (or notice) that (a) is immediately true by definition of DTMOR-BISIM.

First, let’s define Nbad. For the purposes of this proof, we’ll assume that Π = {π0, π1},
because that’s all we need. For Π with more than 2 elements, the remaining programs can be
interpreted in whatever manner (it won’t matter to our conclusion). We’ll also assume that
the set Φ of atomic propositions is enumerated {pi}i∈N.

Definition D.1
Nbad is the Πor-DTM defined as follows.

• The underlying set Nbad of Nbad is Pfin(N) ∪ {t0, t1}, where Pfin(N) is the set of all
finite sets of natural numbers.34

• The topology of Nbad is just the indiscrete topology on Nbad: τbad = {∅, Nbad}.

• All programs of Πor are undefined at t0 and t1. For S ∈ Pfin(N),

‖π0‖ (S) = t0

‖π1‖ (S) = t1

‖πi or πj‖ (S) =

{
‖πi‖ (S) if |S| is even

‖πj‖ (S) if |S| is odd

I.e. π0 always goes to t0, π1 always goes to t1, and or-programs are resolved according
to whether S has an even or odd number of elements.35

34We assume t0 6= t1 and t0, t1 6∈ Pfin(N).
35It is for the sake of this definition that we use Pfin(N), not P(N).
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• t0 only validates p0 (i.e. t0 ∈ Vbad(p0), but t0 6∈ Vbad(pi) for i > 0). t1 does not
validate any atomic proposition. For S ∈ Pfin(N),

S ∈ Vbad(pi) ⇐⇒ i ∈ S

So, for instance, ∅ does not validate any atomic propositions, whereas {37, 128}
validates only p37 and p128.

So we have defined Nbad, and it is indeed an Πor-DTM. Next, we need our Π-DTM P. To
obtain P, note that since Nbad is a Πor-DTM and Πor ⊇ Π, we can consider Nbad as a Π-DTM
by simply “forgetting” that Nbad interprets or-programs. Let U(Nbad) be this Π-DTM. More
formally, U(Nbad) is defined to be the Π-DTM with Pfin(N)∪ {t0, t1} as its underlying set, the
indiscrete topology, the same valuation as Nbad, and the same interpretations of Π-programs as
Nbad. The only difference is that Nbad has interpretations for or-programs, but U(Nbad) does
not. We claim that taking P to be U(Nbad) will do the job.

Start with the following claim.

Lemma D.1
For any S ∈ Pfin(N),

Th(Nbad, S) = Th(U(Nbad)OR, (S, |S| mod 2))

and, for t = t0 or t = t1, and γ ∈ {0, 1},

Th(Nbad, t) = Th(U(Nbad)OR, (t, γ))

In more words: if ϕ ∈ Lor
�© is some formula, then (Nbad, S) |= ϕ iff (U(Nbad)OR, (S, |S|

mod 2)) |= ϕ, where |S| mod 2 is 0 if S has an even number of elements and 1 if S has
an odd number of elements.

Proof. —
This is proved by induction on the structure of ϕ. The case where ϕ is atomic follows by
definition of U(Nbad) (in particular: U(Nbad) and Nbad evaluate atomic propositions the
same way) and definition of OR-augmentation.

The ∧ and ¬ cases are trivial. Now consider ♦. Suppose (Nbad, y) |= ♦ψ (assume
y ∈ Pfin(N) for simplicity. The reasoning is basically the same if y = t0 or t1). Since
there is only one open set, Nbad, this just means that there’s some other world y′ of Nbad

such that (Nbad, y
′) |= ψ. So then by inductive hypothesis we have that the corresponding

world of U(Nbad)OR (either (S, |S| mod 2) if y′ = S ∈ Pfin(N), or (y′, 0) or (y′, 1) if
y′ = t0 or y′ = t1) validates ψ. So no open set can distinguish this world from the world
corresponding to y, (y, |y| mod 2), so (U(Nbad)OR, (y, |y| mod 2) |= ♦ψ. We can use a
similar argument to prove the converse, though slightly more work is required there: if
(S, |S| mod 2) validates ♦ψ as witnessed by (S′, 1− (|S′| mod 2)), we cannot apply our
IH and be done. Instead, we need to pick some natural number m such that m 6∈ S′ and
such that pm does not occur in ψ. From these assumptions we get

(U(Nbad)OR, (S′ ∪ {m} , 1− (
∣∣S′∣∣ mod 2))) |= ψ

because this world agrees with (S′, 1 − (|S′| mod 2)) on all the primitive propositions
occuring in ψ, and has the same primitive dynamics (the primitive dynamics are trivial)
and same constructed dynamics as (both have the same constructor state). But now,∣∣S′ ∪ {m}∣∣ mod 2 = (1 +

∣∣S′∣∣) mod 2 = 1− (
∣∣S′∣∣ mod 2)
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so we can apply the IH to this world and get a world of Nbad validating ψ, hence our
argument carries through.

The ©π case for π ∈ Π is also pretty straightforward, since the primitive dynamics
are the same in Nbad, U(Nbad), and U(Nbad)OR.

The interesting case is formulas of the form ©πiorπjψ and S ∈ Pfin(N). Recall that, in
Nbad, (πi or πj) gets interpreted as πi if S has an even number of elements and as πj if an
odd number. Assume first that |S| is even.

(Nbad, S) |=©πiorπjψ ⇐⇒ (Nbad, ‖πi or πj‖ (S)) |= ψ

⇐⇒ (Nbad, ‖πi‖ (S)) |= ψ

⇐⇒ (Nbad, ti) |= ψ

⇐⇒ (U(Nbad)OR, (ti, 0)) |= ψ (Inductive Hypothesis)

⇐⇒ (U(Nbad)OR, ‖πi‖ (S, 0)) |= ψ

⇐⇒ (U(Nbad)OR, ‖πi or πj‖ (S, 0)) |= ψ (*)

⇐⇒ (U(Nbad)OR, (S, 0)) |=©πiorπjψ

The step labeled (*) is key: (πi or πj) gets interpreted as πi in (S, 0) since the OR-state
is 0. That is why the claim is about (S, |S| mod 2): so the resolution of or-programs (in
U(Nbad)OR, according to the OR-augmentation semantics) matches the “parity checking”
of Nbad. We can make the analogous claim for |S| odd: then (πi or πj) is interpreted as πj .
One thing to note: we’ve shown that certain worlds of Nbad and U(Nbad)OR have the same
theories. But this is not a bisimulation! Indeed, we show below that there cannot be such
a bisimulation.

We simultaneously prove the portion of the claim dealing with t0 and t1. These two
worlds (of Nbad), satisfy exactly the same formulas as their respective counterparts in
U(Nbad)OR: the only primitive proposition (Nbad, t0) satisfies is p0, and the same is true
for (U(Nbad)OR, (t0, 0)), (U(Nbad)OR, (t0, 1)); (Nbad, t1) does not validate any primitive por-
positions, and neither do (U(Nbad)OR, (t1, 0)) and (U(Nbad)OR, (t1, 1)). Again, the ∧ and
¬ cases of the induction are routine. The � induction step also follows by the fact that
the topology is indiscrete.

�

So, from this, we get the following lemma.

Lemma D.2
If U(Nbad)OR |= ϕ, then Nbad |= ϕ.

This follows quite easily from the previous lemma: suppose U(Nbad)OR |= ϕ. Then, for
S ∈ Pfin(N), Th(Nbad, S) = Th(U(Nbad)OR, (S, |S| mod 2)), so (Nbad, S) |= ϕ. Likewise
for t0 and t1. From this latter lemma, we obtain our claim (c) from the top of the proof:
Thor

�©(U(Nbad)OR) ⊆ Th�©(Nbad).

The last thing to prove is that Nbad is not Πor-bisimilar to any DTM of the form MOR.
Assume for the sake of contradiction that s : Nbad →| Πor MOR for some Π-DTM M.

Now, remember that Nbad, the underlying set of Nbad, must be an open set in τbad. By the
(Forth) condition of bisimulation, it must be the case that s(Nbad) – the set of worlds related
to any world of Nbad by s – is open in the topology on MOR. We claim that it is not.

Consider ∅ as a world of Nbad. There must be some world (x, γ) of MOR such that ∅ is
related to (x, γ) by s, since s is total. Furthermore, we know that γ must be 0: since ∅ has
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an even number of elements, (πi or πj) gets interpreted as πi at (Nbad, ∅). So if γ were 1, then
we’d have

(MOR, (x, γ)) 6|=©π0orπ1p0

because π0 or π1 would be interpreted as π1, and π1 leads to a world where p0 is false. But we
have

(Nbad, ∅) |=©π0orπ1p0

so γ must be 0. However, (x, 0) and (x, 1) are topologically indistinguishable in MOR: any open
set containing (x, 0) must also contain (x, 1). So we assumed that s(Nbad) is open in order to
have s constitute a bisimulation. Putting this together, we have:

(x, 1) ∈ s(Nbad)

i.e. there must be some world w of Nbad such that w is related to (x, 1) by s. This, however,
is impossible: if w is related to (x, 1) by a Πor-bisimulation, then w and (x, 1) must have the
same theory. But we know that (x, 1) must make all atomic propositions false:

(MOR, (x, 1)) |= pi ⇐⇒ (MOR, (x, 0)) |= pi (Corollary 3.1.2)

⇐⇒ (Nbad, ∅) |= pi (s : (Nbad, ∅)→| (MOR, (x, 0)), Theorem 4.2)

⇐⇒ i ∈ ∅ (Defn of Nbad)

So w cannot be in Pfin(N): the only element of Pfin(N) which, as a world of Nbad, makes
every atomic proposition false is ∅. ∅ cannot be Πor-bisimilar to (x, 1) because they resolve
or-programs differently: ∅ validates ©π0orπ1p0 whereas (x, 1) does not. w cannot be t0 because
t0 validates p0. Finally, w cannot be t1 because ‖π0‖ must be defined at w ((x, 1) validates
©π0>, and therefore so too must w), but ‖π1‖ isn’t defined at t1.

Having exhausted the possibilities for what w could be, we conclude there is no such w.
Therefore (x, 1) is not in the image of s, thus s cannot satisfy (Forth). So no Πor-bisimulation
s : Nbad →| MOR can exist.

With that, we’ve established (a), (b), and (c).

�

E Sect. 5 Supplement: Induced Refinement Relations

Example E.1
Let s : F 'Σ G be a surjective Σ-bisimulation between F = (X, τX , {fσ}) and G = (Y, τY , {gσ}).
The following are refinement relations on F and G, respectively.

• The “before s” relation, denoted Rs, is defined to be the least equivalence relation on
X such that, for all x, x′ ∈ X,

(∃y ∈ Y )(xsy and x′sy) =⇒ x(Rs)x′

• The “after s” relation, denoted sR, is defined to be the least equivalence relation on Y
such that, for all y, y′ ∈ Y ,

(∃x ∈ X)(xsy and xsy′) =⇒ y(sR)y′
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Example E.2
In Example 4.1 we defined the Π-bisimulation TCM : M→| Π MC . Considering it as a bisimula-
tion of the underlying frames (à la Note 4.2), we obtain a frame bisimulation

TCF : F →| Π FC

where each x ∈ |F| is related to all and only the worlds of
∣∣FC∣∣ = |F|×Γ whose first coordinate

is x.

Consider the before and after relations of TCF . The before relation is just equality: the
only scenario where xTCF w and x′TCF w for some x, x′ ∈ |F| and w ∈

∣∣FC∣∣ is if x = x′. Thus,

RTCF (x) = {x}

The after relation will be more important for our considerations. Observe that (x, γ) and
(x′, γ′) are TCFR-related just in case x = x′, i.e. they are two worlds with the same first
coordinate but possibly different Γ-states. Thus, for any given world (x, γ) of F , the set
[(x, γ)]TCFR

is given by [
(x, γ)]TCFR

= {x} × Γ.

However, notice that this is exactly the relation RCF introduced above – a fact which saves us
from the slightly-more-clumsy notation “TCFR”.

Theorem E.1 (Refined Primitive Invariance)
For all surjective Π-bisimulations s : F 'Π G,

Th�©(Π;F ,Rs) = Th�©(Π;G, sR)

Proof. —
Observe that we can “transfer” valuations back and forth across s: if V is a valuation on F ,
we can define a valuation W on G by:

y ∈W (p) =⇒ s−1(y) ⊆ V (p).

Likewise, for W a valuation on G, we can define V by putting x ∈ V (p) iff s(x) ⊆W (p). Notice
that if we obtain W from V in this manner (or V from W ), then s satisfies (Base), i.e. is a
Π-bisimulation between the DTMs (F , V ) and (G,W ), which gives

Th�©(Π; (F , V )) = Th�©(Π; (G,W )).

So, to prove the theorem, it suffices to show that all ∫R-respecting valuations W on G can
be obtained in this manner from a Rs-respecting valuation on F , and vice versa. In other
words, we want to show that this “transferring” operation between Rs-respecting valuations
and sR-respecting valuations is bijective.

To see one direction, pick arbitrary sR-respecting valuation W on G. Then pull that back
to a valuation V on F by x ∈ V (p) iff s(x) ⊆ W (p). It’s easy to check that V respects Rs.
But then, if we transfer V across s (call this W ′), we get W back:

y ∈W ′(p) ⇐⇒ s−1(y) ⊆ V (p)

⇐⇒ s−1(y) ⊆ {x ∈ |F| : s(x) ⊆W (p)}
⇐⇒ s(s−1(y)) ⊆W (p)

But s(s−1(y)) consists of those y′ such that xsy′ for some x ∈ s−1(y). But by the assumption
that W respects sR, y and y′ must get the same valuation. So y ∈ W ′(p) iff y ∈ W (p). A
similar argument will show that any Rs-respecting valuation on F arises from a sR-respecting
valuation on G, and we’re done.
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�

Corollary E.1.1
For all Π-frames F and all program constructors C,

Th�©(Π;F) = Th�©(Π;FC ,RCF ).

Proof. —
This follows from Theorem E.1 and the observations from Example E.2.

�

F Sect. 5 Proofs

(Theorem 5.1)
Suppose (G,R) is a refined Σ-frame which has outcome-dense refinement classes and let V be
any valuation on G which respects R. Then, for any x, x′ ∈ |G| such that xRx′, the following
equalities hold.

Th�©(Π; (G, V ), x) = Th�©(Π; (G, V ), x′)

ThPDL(Σ; (G, V ), x) = ThPDL(Σ; (G, V ), x′)

Proof. —
Let N = (G, V ).

For the first statement (about the Π-theories), observe that the quotient function QR :
N → N/R satisfies the (Base) condition by definition, and is hence a Π-bisimulation between
these DTMs. Therefore,

Th�©(Π;N, x) = Th�©(Π;N/R, [x]) (Theorem 4.2)

= Th�©(Π;N/R, [x′]) (xRx′)
= Th�©(Π;N, x′). (Theorem 4.2)

For the second statement, induct on ϕ ∈ LPDL(Σ). The base case (primitive propositions)
follows from the assumption that V respects R. The ¬ and ∧ cases are immediate. To prove
the 〈σ〉 case, inductively assume that all R-related worlds agree on ψ. Now suppose

(N, x) |= 〈σ〉ψ,

i.e. (N, x) |= ♦©σ ψ. To show (N, x′) |= ♦©σ ψ, we’ll pick an arbitrary open set U containing
x′ and show that it contains a ©σψ-world. Consider R(U), which must be open by definition
of refinement relation. It must also contain x, since x′ ∈ U and xRx′. Therefore, R(U) must
contain a ©σψ world, by the assumption that (N, x′) |= ♦©σ ψ. Call this world w. We
know that ‖σ‖ (w) is defined and is a ψ-world. Now, notice that U and [w]R must intersect:
otherwise, it wouldn’t be the case that w ∈ R(U). By the assumption of outcome-dense
refinement classes, there must be some w′ ∈ [w]R ∩ U such that ‖σ‖ (w′) is defined and is
R-related to ‖σ‖ (w). By the inductive hypothesis, this gives that ‖σ‖ (w′) is a ψ-world, hence
w is a ©σψ-world. We have located a ©σψ-world in an arbitrary open set U containing x′,
and thus

(N, x′) |= 〈σ〉ψ.

The opposite direction (that (N, x′) |= 〈σ〉ψ implies (N, x′) |= 〈σ〉ψ) is identical.

�
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G Sect. 6 Proofs

(Corollary 6.0.1)
If C is an indiscrete program constructor (in the sense of Example 5.2), then for all Π-DTMs
M = (F , V ), and all worlds w,w′ of MC such that wRCFw′,

ThPDL(Πc;MC , w) = ThPDL(Πc;MC , w′).

Proof. —
This simply instantiates Theorem 5.1, and makes the observation that the valuation on an
augmented DTM MC respects RCF (where F is the frame underlying M).

�

(Prop. 6.1)
For any program constructor C and any Π-frame F ,

F 'Π FC/RCF .

Indeed,
F ∼=Π FC/RCF .

Proof. —
Observe that the RCF -equivalence classes are just the sets of all worlds with the same F-world.
So quotienting by this equivalence relation just gives F back.

�

(Prop. 6.2)
For any C, the following are equivalent.

• For every Π-frame F , (FC ,RCF ) |= ∆

• For every Π-DTM M, MC |= ∆

Proof. —
Observe for any Π-DTM M = (F , V ) that if we denote write MC = (FC , V C), then the
valuation V C respects RCF . Moreover, as noted at several points throught this thesis, all RCF -
respecting valuations arise in this way. This gives us the desired equivalence: if all MC validate
∆, then any C-augmented frame FC equipped with a RCF -respective valuation validates ∆,
hence (FC ,RCF ) validates ∆. Conversely, if (FC ,RCF ) validates ∆, then any MC = (FC , V C)
validates ∆, because V C respects RCF .

�

H Sect. 7 Proofs

(Lemma 7.2)
For every Π-frame F ,

(FOR,ROR
F ) |= χOR

Proof. —
Recall these definitions
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Definition (Defn. 7.4)
Now, given a world x of G and an ordered pair (π0, π1) of primitive programs,

• x is a 0-world for (π0, π1)

‖π0‖ (x) ≈R ‖π0 or π1‖ (x)

• x is a 1-world for (π0, π1)

‖π1‖ (x) ≈R ‖π0 or π1‖ (x)

We’ll use Prop. 6.2 and prove that every OR-augmented DTM validates χOR. Throughout,
let M be an arbitrary Π-DTM.

Let’s begin by observing that for every p ∈ Φ, every π0, π1 ∈ Π, and every x ∈ |M|,

(MC , (x, 0)) |= Maybe0(p, π0, π1)

(MC , (x, 1)) |= Maybe1(p, π0, π1)

Moreover, if ‖π0‖M (x) and ‖π1‖M (x) differ on p (e.g. one is defined and validates p whereas
the other is undefined or refutes p) then

(MC , (x, 0)) |= Only0(p, π0, π1)

(MC , (x, 1)) |= Only1(p, π0, π1).

From these observations, the validity of (OR-Typ), (OR-Reg0), and (OR-Reg1) is immediate.
The validity of (OR-Real0) and (OR-Real1) comes from the fact that every ROR

F -equivalence
class (and any nonempty intersection of an open set with an ROR

F -equivalence class) contains
both the 0-copy (x, 0) and the 1-copy (x, 1) of some world x of M. Either neither of these
validate their respective Only formula (e.g. if ‖π0‖ (x) and ‖π1‖ (x) are R-related) – in which
case the antecedent of (OR-Real0) and (OR-Real1) is refuted, and Realization holds vacuously.
If (x, 0) validates Only0(q, π0, π1), then the outcomes of π0 and π1 are dinstinguishable by q, and
then (x, 1) must validate Only1(q, π0, π1), yielding (OR-Real1). Likewise for (OR-Real0). The
Persistence axioms are validated because no Πor-program σ actually changes the OR constructor
state, i.e. execution of σ from (x, 0) lands in some (x′, 0), and likewise for 1 – regardless of
whether σ is primitive or constructed. Thus, if executing σ indeed “succeeds” from (x, 0) (in
the sense that©σ> holds),36 then the world it results in, (x′, 0), also validates Maybe0(q, π2, π3)
for any q, π2, π3 because it is still a 0-copy of some world, x′, of M and therefore validates every
Maybe0 formula.

�

(Lemma 7.3)
For any world x and any primitive programs π0, π1, if

((G, v), x) |= (©π0p ↔ ©π0orπ1p) ∨ (©π1p ↔ ©π0orπ1p)

for all v which respect R, then x is either a 0-world or a 1-world (or both) for (π0, π1)

36Under our earlier epistemic interpretation, this was the action denoted by σ being “possible” at the present point
of the situation.
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Proof. —
Pick some arbitrary world x of G and some arbitrary ordered pair (π0, π1) of programs in Π. So
suppose (for contradiction) that x is neither a 0-world for (π0, π1) nor a 1-world. Then we’re
in one of three cases.

(1a) ‖π0 or π1‖ is defined at x, but ‖π0‖ and ‖π1‖ are not;

(1b) ‖π0‖ and ‖π1‖ are defined at x, but ‖π0 or π1‖ isn’t;

(1c) ‖π0 or π1‖ and one or both of ‖π0‖ , ‖π1‖ is defined at x, but their images are not R-
related:

(‖π0 or π1‖ (x), ‖π0‖ (x)) 6∈ R and (‖π0 or π1‖ (x), ‖π1‖ (x)) 6∈ R.

We’ll deal with the subcase of (1c) where both ‖π0‖ and ‖π1‖ are defined, but the rest can be
handled analogously.

Suppose ‖π0‖, ‖π1‖, and ‖π0 or π1‖ are defined at x but

(‖π0 or π1‖ (x), ‖π0‖ (x)) 6∈ R and (‖π0 or π1‖ (x), ‖π1‖ (x)) 6∈ R.

Then define a valuation v on G by putting

v(p) =
[
‖π0‖ (x)

]
∪
[
‖π1‖ (x)

]
=
{
x′ ∈ X : x′ is R-related to ‖π0‖ (x) or ‖π1‖ (x)

}
,

Note this does not include ‖π0 or π1‖ (x). So x validates ©π0p and ©π1p but not ©π0orπ1p,
and we have

((G, v), x) 6|= (©π0p ↔ ©π0orπ1p) ∨ (©π1p ↔ ©π0orπ1p).

Since v respects R, this proves

(G,R) 6|= (©π0orπ1p ↔ ©π0p) ∨ (©π0orπ1p ↔ ©π1p)

contrary to our assumption that (G,R) |= χOR. So we have proved that x must be a 0-world or
a 1-world for (π0, π1). As mentioned, similar constructions will work for the other cases falling
under (1c), as well as (1a) and (1b)37 .

�

(Lemma 7.4)
s is surjective and open

Proof. —
The main thrust of this proof is showing that in a refined Πor-frame (G,R) validating χOR,
every R-equivalence class contains a 0-world and every R-equivalence class contains a 1-world.
We prove the 0 case; 1 is identical.

Suppose [x] contained no 0-worlds. Then, in particular, x is not a 0-world and, by definition
of 0-world, there must be some pair of primitive programs (π0, π1) for which x is a 1-world
but not a 0-world (if there were no such pair, then x would be a 0-world). We’ll construct an
R-respecting valuation V on G such that (G, V ) refutes (OR-Real0).

Assume x fails to be a 0-world for (π0, π1) because ‖π0‖ (x) and ‖π0 or π1‖ (x) are both
defined, but are not R-related. Recall by ?? and Defn. 7.3 that there are several other cases

37(1b) uses the exact same definition of v(p). For (1a) and the other (1c), put v(p) to be the R-equivalence class
of ‖π0 or π1‖ (x).
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– they can be handled analogously. x must then be a 1-world as arugued in the proof of
Theorem 7.1. Put V (p) = [x] and put V (q) to be the R-equivalence class of ‖π0‖ (x). Observe
then that V respects R, and that ((G, V ), x) |= p and

(G, V ), x) |=©π0q ∧ ¬©π1 (x) ∧ ¬©π0orπ1 q

To see this, note that ‖π0 or π1‖ (x) cannot be in V (q) = [‖π0‖ (x)], because x is not a 0-world
for (π0, π1) and so ‖π0‖ (x) and ‖π0 or π1‖ (x) cannot be R-related. We are assuming that x is
a 1-world for (π0, π1), however, so ‖π0 or π1‖ (x) and ‖π1‖ (x) must be R-related. So ‖π1‖ (x)
can’t be a q-world either, hence x validates ¬©π1 q. Putting this all together, we have

((G, V ), x) |= p ∧ Only1(q, π0, π1).

So, to refute (OR-Real0) at x, we need to refute ♦(p ∧ Only0(q, π0, π1) at x. To do this, we just
need an open set U witnessing that

((G, V ), x) |= �¬(p ∧ Only0(q, π0, π1).

But we have something stronger: no world of G validates p ∧ Only0(q, π0, π1) – and therefore
U = |G| suffices. To see this, observe that p is only validated by the worlds of [x]. And no
world of [x] will validate Only0(q, π0, π1). If some world x′ of [x] did validate Only0(q, π0, π1),
then x′ could not possibly be a 1-world for (π0, π1). But, as proven above, x′ must either be
a 0-world for every pair of programs or a 1-world for every pair of programs. Since it isn’t a
1-world for this pair of programs, it must be a 0-world for all pairs of programs, contrary to
our assumption. We have reached a contradiction, so we conclude that [x] must contain at
least one 0-world. Again, by a similar proof, [x] must contain a 1-world too.

But then surjectivity follows quickly: every world of (G/R)OR is of the form ([x], 0) or
([x], 1) for some x. To get a world x0 which is related to ([x], 0) by s, just pick the 0-world in
x0 ∈ [x] which must exist by the preceding argument. It’s a 0-world in [x], and hence must be
related to ([x], 0) by s. Likewise for 1. Openness also follows quickly: if we take an open set U
in G, then the set of worlds related to it is just

{([x], γ) : x ∈ U, γ ∈ {0, 1}} = {[x] : x ∈ U} × {0, 1}

where both ([x], 0) and ([x], 1) are included by the preceding argument. But notice that
{[x] : x ∈ U} is the image of U under the quotient map G → G/R, which is open by the
fact that R is a refinement relation. This completes the proof of the lemma.

�

(Lemma 7.5)
For every σ ∈ Πor, every world x of G and every world w of J ,

• If xsw and ‖σ‖G (x) is defined, then ‖σ‖J (w) is defined and ‖σ‖G (x) is related to
‖σ‖J (w) by s

• If xsw and ‖σ‖J (w) is defined, then ‖σ‖G (x) is defined and ‖σ‖G (x) is related to
‖σ‖J (w) by s

Proof. —
First: if σ is a primitive program (σ ∈ Π), then this is follows from the definitions of quotients,
OR-augmentation, and s: if xsw, then w = ([x], γ) for γ ∈ Type(x). We’ve seen that the
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behavior of a primitive program π at x in G is exactly the behavior of π at [x] in G/R, which
is exactly the behavior of π at ([x], γ) (for either γ = 0 or 1) in J = (G/R)OR.

For constructed programs: notice w = ([x], γ) for γ ∈ Type(x). If γ = 0, then that means
0 ∈ Type(x) and

‖π0‖G (x) ≈R ‖π0 or π1‖G (x).

So if xs([x], 0) and ‖π0 or π1‖G (x) is defined, then ‖π0‖G (x) is also defined and is R-related to
‖π0 or π1‖G (x). Thus,

‖π0 or π1‖J ([x], 0) = ‖π0‖J ([x], 0) (Defn of OR)

= (‖π0‖G/R ([x]), 0) (Defn. of OR-augment)

= ([‖π0‖G (x)], 0) (Defn. of quotient)

= ([‖π0 or π1‖G (x)], 0). (Above)

Now, in any refined frame validating χOR, it must be the case that if 0 ∈ Type(x), then
0 ∈ Type(‖σ‖G (x)). If not, we could be able to obtain a refutation of the Persistence ax-
ioms of χOR by carefully choosing an R-respecting valuation of p and q. Therefore, 0 ∈
Type(‖π0 or π1‖mcG (x)), and we have

(‖π0 or π1‖G (x)) s (‖π0 or π1‖J ([x], 0))

as desired.

The other direction – noting that the behavior of programs in J is reflected in their
behavior in G – is proved similarly.

�
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